No CrossRef data available.
Published online by Cambridge University Press: 15 May 2017
Introduction: Almost every domain of quality is reduced in crowded emergency departments (ED), with significant challenges around the definition, measurement and interventions for ED crowding. We wished to determine if a combination of 3 easily measurable variables could perform as well as standard tools (NEDOCS score and a NEDOCS-derived LOCAL tool) in predicting ED crowding at a tertiary hospital with 57,000 visits per year. Methods: Over a 2-week period, we recorded ED crowding predictor variables and calculated NEDOCS and LOCAL scores. These were compared every 2 hours to a reference standard Physician Visual Analog Scale (range 0 to 10) impression of crowding to determine if any combination of variables outperformed NEDOCS and LOCAL (crowded=5 or greater). Five numeric variables performed well under univariate analysis: i) Total ED Patients; ii) Patients in ED beds + Waiting Room; iii) Boarded Patients; iv) Waiting Room Patients; v) Patients in beds To Be Seen. These underwent multivariate, log regression with stratification and bootstrapping to account for incomplete data and seasonal and daily effect. Results: 143 out of a possible 168 observations were completed. Two different combinations of 3 variables outperformed NEDOCS and LOCAL. The most powerful combination was: Boarded Patients; plus Waiting Room Patients; plus Patients in beds To Be Seen, with Sensitivity 81% and Specificity 76% (r=0.844, β=0.712, p<0.0001, strong positive correlation). This compared favourably with NEDOCS and LOCAL, each with Sensitivity 71% and Specificity 64%[PA1] (r=0.545 and r=0.640 respectively). We will also present a sensitivity and specificity analysis of all combinations of predictor variables, using various reference standard cut-offs for crowding. Conclusion: A combination of 3 easily measurable ED variables (Boarded Patients; plus Waiting Room Patients; plus Patients in beds To Be Seen) performed better than the validated NEDOCS tool and a NEDOCS-derived LOCAL score at predicting ED crowding. Work is on going to design a simple tool that can predict crowding in real time and facilitate early interventions. Correlation with ED system and clinical outcomes should be studied in different ED environments.