Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T11:31:40.471Z Has data issue: false hasContentIssue false

Geometry of Uniform Spanning Forest Components in High Dimensions

Published online by Cambridge University Press:  07 January 2019

Martin T. Barlow
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada Email: barlow@math.ubc.ca
Antal A. Járai
Affiliation:
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK Email: a.jarai@bath.ac.uk

Abstract

We study the geometry of the component of the origin in the uniform spanning forest of $\mathbb{Z}^{d}$ and give bounds on the size of balls in the intrinsic metric.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by NSERC (Canada).

References

Aizenman, M. and Newman, C. M., Tree graph inequalities and critical behavior in percolation models . J. Stat. Phys. 36(1984), nos. 1/2, 107143. https://doi.org/10.1007/BF01015729.Google Scholar
Barlow, M. T. and Masson, R., Exponential tail bounds for loop-erased random walk in two dimensions . Ann. Probab. 38(2010), no. 6, 23792417. https://doi.org/10.1214/10-AOP539.Google Scholar
Barlow, M. T. and Masson, R., Spectral dimension and random walks on the two dimensional uniform spanning tree . Comm. Math. Phys. 305(2011), 2357. https://doi.org/10.1007/s00220-011-1251-8.Google Scholar
Benjamini, I., Lyons, R., Peres, Y., and Schramm, O., Uniform spanning forests . Ann. Probab. 29(2001), 165.Google Scholar
Bhupatiraju, S., Hanson, J., and Járai, A. A., Inequalities for critical exponents in d-dimensional sandpiles . Electron. J. Probab. 22(2017), paper no. 85, 151. https://doi.org/10.1214/17-EJP111.Google Scholar
Lawler, Gregory F., A self-avoiding random walk . Duke Math. J. 47(1980), no. 3, 655693. https://doi.org/10.1215/S0012-7094-80-04741-9.Google Scholar
Lawler, Gregory F., Intersections of random walks . Probability and its Applications . Birkhäuser Boston, Boston, MA, 1991.Google Scholar
Lawler, Gregory F., The logarithmic correction for loop-erased walk in four dimensions . In: Proceedings of the Conference in Honor of Jean-Pierre Kahane . J. Fourier Anal. Appl. (1995) Special Issue, 347–361.Google Scholar
Lawler, Gregory F., Loop-erased random walk . In: Perplexing problems in probability . Progress in probability, 44. Birkhäuser Boston, Boston, MA, 1999.Google Scholar
Lawler, Gregory F. and Limic, Vlada, Random walk: a modern introduction . Cambridge University Press, 2009.Google Scholar
Lyons, R., Morris, B. J., and Schramm, O., Ends in uniform spanning forests . Electron. J. Probab. 13(2008), no. 58, 17021725. https://doi.org/10.1214/EJP.v13-566.Google Scholar
Lyons, R. and Peres, Y., Probability on trees and networks . Cambridge Series in Statistical and Probabilistic Mathematics, 42. Cambridge University Press, New York, 2016.Google Scholar
Masson, Robert, The growth exponent for planar loop-erased random walk . Electron. J. Probab. 14(2009), no. 36, 10121073. https://doi.org/10.1214/EJP.v14-651.Google Scholar
Pemantle, R., Choosing a spanning tree for the integer lattice uniformly . Ann. Probab. 19(1991), no. 4, 15591574. https://doi.org/10.1214/aop/1176990223.Google Scholar
Wilson, D. B., Generating spanning trees more quickly than the cover time . Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing . ACM, New York, 1996, pp. 296303.Google Scholar