No CrossRef data available.
Article contents
Arithmetic Invariants of Simplicial Complexes
Published online by Cambridge University Press: 20 November 2018
Extract
What invariants of a finite simplicial complex K can be computed solely from the values v0(K), V1(K), …, vi(K), … where Vi(K) is the number of i-simplexes of K? The Euler chracteristic χ(K) = Σ i (– 1)ivi(K) is a subdivision invariant and a homotopy invariant while the dimension of K is a subdivision invariant and homeomorphism invariant. In [3], Wall has shown that the Euler chracteristic is the only linear function to the integers that is a subdivision invariant. In this paper we show that the only subdivision invariants (linear or not) of K are the Euler characteristic and the dimension. More precisely we prove the following theorem.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1980