No CrossRef data available.
Article contents
Hermite’s Constant for Function Fields
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We formulate an analog of Hermite's constant for function fields over a finite field and state a conjectural value for this analog. We prove our conjecture in many cases, and prove slightly weaker results in all other cases.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012
References
[1]
Bombieri, E. and Vaaler, J.
On Siegel's lemma.
Invent. Math.
73(1983), no. 1, 11–32. http://dx.doi.org/10.1007/BF01393823
Google Scholar
[2]
Conway, J. H. and Sloane, N. J. A., Sphere Packings, Lattices and Groups.
Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 1991.Google Scholar
[3]
Evertse, J.-H. and Schlikewei, H. P., The absolute subspace theorem and linear equations with unknowns from a multiplicative group. In: Number Theory in Progress. De Gruyter, Berlin, 1999, pp. 121–142.Google Scholar
[4]
Hurlburt, C. and Thunder, J. L., Non-linear codes from points of bounded height.
Finite Fields Appl.
13(2007), no. 2, 281–292. http://dx.doi.org/10.1016/j.ffa.2005.11.001
Google Scholar
[5]
Roy, D. and Thunder, J. L., An absolute Siegel's lemma.
J. Reine Angew. Math.
476(1996), 1–26.Google Scholar
[6]
Thunder, J. L., An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma. J. Reine Angew. Math. 475(1996), 167–185. http://dx.doi.org/10.1515/crll.1996.475.167
Google Scholar
[7]
Thunder, J. L., Siegel's lemma for function fields.
Michigan Math. J.
42(1995), no. 1, 147–162. http://dx.doi.org/10.1307/mmj/1029005160
Google Scholar
[8]
Weil, A.
Basic Number Theory. Third edition. Die Grundlehren der Mathematischen Wissenschaften 144. Springer-Verlag, New York, 1974.Google Scholar
You have
Access