Published online by Cambridge University Press: 20 November 2018
In a previous paper the authors showed that, under some technical conditions, the local Galois representations attached to the members of a non-$\text{CM}$ family of ordinary cusp forms are indecomposable for all except possibly finitely many members of the family. In this paper we use deformation theoretic methods to give examples of non-$\text{CM}$ families for which every classical member of weight at least two has a locally indecomposable Galois representation.