Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T05:16:07.595Z Has data issue: false hasContentIssue false

Note on the Modular Representationsof Symmetric Groups

Published online by Cambridge University Press:  20 November 2018

Hirosi Nagao*
Affiliation:
Osaka University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Let p be a fixed prime number. We denote by k(n) the number of partitions of n and set

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Brauer, R. and Nesbitt, C., On the modular representations of groups of finite order, University of Toronto Studies, Math. Ser., 4 (1937).Google Scholar
2. Brauer, R., On the modular characters of groups, Ann. Math., 42 (1941), 556590.Google Scholar
3. Brauer, R. and Robinson, G. de B., On a conjecture by Nakayama, Trans. Royal Soc. Canada, Sec. III , 40 (1947), 1125.Google Scholar
4. Chung, J. H., Modular representations of the symmetric group, Can. J. Math., 8 (1951), 309327.Google Scholar
5. Little wood, D. E., Modular representations of symmetric groups, Proc. Royal Soc. London (A), 209 (1951), 333352.Google Scholar
6. Murnaghan, F. D., On the representations of the symmetric group, Amer. J. Math., 59 437488.Google Scholar
7. Nakayama, T., Some modular properties of irreducible representations of a symmetric group I, II, Jap. J. Math., 17 (1948), 165-184, 277294.Google Scholar
8. Nakayama, T. and Osima, M., Note on blocks of symmetric group, Nagoya Math. J., 2 (1951), 111117.Google Scholar
9. Osima, M., On some character relations of symmetric groups, Okayama Math. J., 1 (1952), 6368.Google Scholar
10. Osima, M. Some remarks on the characters of the symmetric groups, Can. J. Math., 5 (1953).Google Scholar
11. Robinson, G. de B., On the modular representations of the symmetric group, Proc. Nat. Acad. Sci., 55(1952).Google Scholar
12. Robinson, G. de B., On a conjecture by J. H. Chung, Can. J. Math., 4 (1952), 373380.Google Scholar
13. Staal, R. A., Star diagrams and the symmetric group, Can. J. Math., 2 (1950), 7992.Google Scholar
14. Thrall, R. M. and Robinson, G. de B., Supplement to a paper by G. de B. Robinson, Amer. J. Math., 78 (1951), 721724.Google Scholar
15. Weyl, H., The classical groups (Princeton, 1939).Google Scholar