Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:39:35.258Z Has data issue: false hasContentIssue false

On Surface Waves

Published online by Cambridge University Press:  20 November 2018

Alexander Weinstein*
Affiliation:
Naval Ordnance Laboratory,
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The linearized theory of surface waves leads to several mixed boundary value problems which have been investigated by various methods. As the physical background of the theory has been repeatedly discussed, it will suffice to deal here mainly with the mathematical aspect of the question.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1949

References

[1] Boggio, T., Rendiconti della R. Accademia di Torino, vol. 47 (1912), 22;Google Scholar
see also Goursat, E.,Cours d'Analyse Mathématique, vol. 3 (Paris, 1927), 240.Google Scholar
[2] Weinstein, A., Rendiconti delta R. Accademia dei Lincei, vol. 5, Series 6a (1927), 259.Google Scholar
[3] Weinstein, A., C. R. Acad. Set., Paris, vol. 184 (1927), 497.Google Scholar
[4] Hoheisel, G., Jber. Deutschen Math. Verein., vol. 39 (1930), 54.Google Scholar
[5] Bochner, S., Fouriersche Integrale (Berlin, 1932), chap. VII.Google Scholar
[6] Cooper, J. L. B., J . London Math. Soc., vol. 14 (1939), 124.Google Scholar
[7] Heins, A. E., Bull. Amer. Math. Soc, vol. 49 (1943), 130.Google Scholar
[8] Miche, A., Annales des ponts et chaussées, vol. 114 (1944).Google Scholar
[9] Lewy, H., Bull. Amer. Math. Soc, vol. 52 (1946), 737.Google Scholar
[10] Stoker, J. J., Quarterly of Applied Math., vol. 5 (1947), 1.Google Scholar
[11] Heins, A. E., Amer. J. Math., vol. 70 (1948) 730.Google Scholar
[12] Friedrichs, K. O., Communications on Appl. Math., vol. 1 (1948), 109.Google Scholar
[13] Friedrichs, K. O. and Lewy, H., Communications on Appl. Math., vol. 1 (1948), 135.Google Scholar
[14] John, F., Communications on Appl. Math., vol. 1 (1948), 149.Google Scholar
[15] Isaacson, E., Communications on Appl. Math., vol. 1 (1948), 201.Google Scholar
[16] Kreisel, G., Quarterly of Applied Math., vol. 7 (1949), 21.Google Scholar