No CrossRef data available.
Article contents
Self-Centred Sets
Published online by Cambridge University Press: 20 November 2018
Extract
A subset S of an abelian group G is said to have a centre at a if whenever x belongs to S so does 2a — x. This note is mainly concerned with self-centred sets, i.e. those S with the property that every element of S is a centre of S. Such sets occur in the study of space groups: the set of inversion centres of a space group is always self-centred. Every subgroup of G is self-centred, so is every coset in G: this is the reason why the set of points of absolute convergence of a trigonometric series is self-centred or empty (1). A self-centred set of real numbers that is either discrete or consists of rational numbers must in fact be a coset (see §3); this does not hold for an arbitrary enumerable self-centred set of real numbers (§3.3).
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1966