Article contents
Sharp endpoint estimates for some operators associated with the Laplacian with drift in Euclidean space
Published online by Cambridge University Press: 16 June 2020
Abstract
Let $v \ne 0$ be a vector in ${\mathbb {R}}^n$ . Consider the Laplacian on ${\mathbb {R}}^n$ with drift $\Delta _{v} = \Delta + 2v\cdot \nabla $ and the measure $d\mu (x) = e^{2 \langle v, x \rangle } dx$ , with respect to which $\Delta _{v}$ is self-adjoint. This measure has exponential growth with respect to the Euclidean distance. We study weak type $(1, 1)$ and other sharp endpoint estimates for the Riesz transforms of any order, and also for the vertical and horizontal Littlewood–Paley–Stein functions associated with the heat and the Poisson semigroups.
MSC classification
- Type
- Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © Canadian Mathematical Society 2020
Footnotes
H.-Q. Li is partially supported by NSF of China (Grants No. 11625102 and No. 11571077) and The Program of Shanghai Academic Research Leader (18XD1400700). Both authors profited from a grant from the Gothenburg Centre for Advanced Studies in Science and Technology.
References
- 3
- Cited by