Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T23:48:43.631Z Has data issue: false hasContentIssue false

Univalent α-Spiral Functions

Published online by Cambridge University Press:  20 November 2018

Richard J. Libera*
Affiliation:
The University of Delaware, Newark, Delaware
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose ƒ is regular in the open unit disk Δ, |z| < 1, and has a simple zero at the origin and no other zeros. Špaček (15) essentially showed that ƒ is univalent in Δ if and only if

such that 0 < r < 1 and 0 < t2t1 ⩽ 2π.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Clunie, J., On meromorphic schlicht functions, J. London Math. Soc., 34 (1959), 215216.Google Scholar
2. Epstein, B. and Schoenberg, I. J., On a conjecture concerning schlicht functions, Bull. Amer. Math. Soc., 65 (1959), 273275.Google Scholar
3. Kaplan, W., Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169185.Google Scholar
4. Krzyź, J., The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 10, 4 (1962), 201204.Google Scholar
5. Krzyź, J. and Lewandowski, Z., On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys., 11, 7 (1963), 447448.Google Scholar
6. Libera, R. J., Some radius of convexity problems, Duke Math. J., 31 (1964), 143158.Google Scholar
7. Marx, A., Untersuchungen iiber schlichte Abbildungen, Math. Ann., 107 (1932), 4067.Google Scholar
8. Montel, P., Leçons sur les fonctions univalentes ou multivalentes (Paris, 1933).Google Scholar
9. Nehari, Z., Conformai mapping (New York, 1952).Google Scholar
10. Ozaki, S., Some remarks on the univalency and multivalency of functions, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A, 2, 32 (1934), 1529.Google Scholar
11. Robertson, M. S., On the theory of univalent functions, Ann. of Math., 37 (1936), 374408.Google Scholar
12. Robertson, M. S., Variational methods for functions with positive real part, Trans. Amer. Math. Soc., 102 (1962), 8293.Google Scholar
13. Robertson, M. S., Radii of starlikeness and close-to-convexity, Proc Amer. Math. Soc., 16 (1965), 847852.Google Scholar
14. Schild, A., On starlike functions of order α, Amer. J. Math., 87, 1 (1965), 6570.Google Scholar
15. Špaček, L., Přispěvek k teorii funcki prostyčh, Căsopis Pěst. Mat. a Fys., 62 (1932), 1219.Google Scholar
16. Zamorski, J., About the extremal spiral schlicht functions, Ann. Polon. Math., 9 (1962), 265273.Google Scholar