Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T09:14:29.384Z Has data issue: false hasContentIssue false

Amino Acid Metabolism in Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

B. Lemieux
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
A. Barbeau*
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
V. Beroniade
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
D. Shapcott
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
G. Breton
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
G. Geoffroy
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
S. Melançon
Affiliation:
Centre Hospitalier Universitaire de Sherbrooke; the Hôpital Hôtel-Dieu de Montreal; the Clinical Research Institute of Montreal, and the Hôpital Ste-Justine de Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal H2W 1R7 Quebec, Canada
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study of amino acids determined by sequential Multi-sample Amino Acid Automatic Analyzer in plasma, urine and cerebrospinal fluid (CSF) in patients with Friedreich's ataxia and control subjects has revealed a number of mathematically significant variations from normal. Of practical physiological importance are the following: a high urinary excretion of alanine with slightly elevated plasma levels; a low plasma and CSF concentration of aspartic acid in the resence of normal urinary values and finally a low CSF concentration of taurine accompanied by normal plasma levels, but elevated urinary output and renal clearance rates. We postulate that the modifications in alanine and aspartic acid are less specific and probably secondary, but there could be a genetic defect in the membrane transport of taurine and the other β-amino acids in Friedreich's ataxia.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1976

References

REFERENCES

Bacchus, H. (1976). Essentials of Metabolic Diseases and Endocrinology. Univ. Park Press, Balrimore, pp. 1511.Google Scholar
Barbeau, A., Inoue, N., Tsukada, Y., and Butterworth, R.F. (1975). The neuropharmacology of taurine. Life Sciences, 17, 669678.CrossRefGoogle ScholarPubMed
Berio, A., Di Stefano, A., and Camozzl, C. (1973). La dimostrazione delle amine urinarie mediante cromatografia bidimensionale – Risultati personali nel bambino presentante condizioni fisiopatologiche diverse. Minerva. Pediatrica, 25, 497505.Google Scholar
Blake, R.L., Grillo, R.V., and Russell, E.S. (1974). Increased taurine excretion in hereditary hyperprolinemia of the mouse. Life Sciences, 14, 12851290.CrossRefGoogle ScholarPubMed
Chesney, R.W., Scriver, C.R., and Mohyuddin, F. (1975). Location of mutant β-amino acid carrier in renal epithelium. Clin. Res., 23, 650A.Google Scholar
Christensen, H.N. (1959). Active transport, with special reference to the amino acids. Perspect. Biol. Med., 2, 228241.CrossRefGoogle Scholar
Davies, L.P., and Johnston, G.A.R. (1975). D-aspartate oxidase activity in extracts of mammalian central nervous tissue. J. Neurochem., 25, 299304.CrossRefGoogle ScholarPubMed
Dunn, H.G., and Dolman, C.L. (1969). Necrotizing encephalomyelopathy. Report of a case with relapsing polyneuropathy and hyperalaninemia and with manifestations resembling Friedreich’s ataxia. Neurology (Minneap.), 19, 536550.CrossRefGoogle ScholarPubMed
Evered, D.F., Harvey, M.S., Luck, L.J., and Solari, M.E. (1969). The relationship between urinary taurine excretion and the intake of protein-rich foods. Life Sciences, 8(2), 601605.CrossRefGoogle ScholarPubMed
Goldman, H., and Scriver, C.R. (1967). A transport system in mammalian kidney with preference for β-amino compounds. Pediat. Res., 1, 212213.CrossRefGoogle Scholar
Hall, C.D., Stowe, F.R., and Summer, G.K. (1974). Familial cerebellar dyssynergia and myoclonus epilepsy associated with defect of amino acid metabolism. Neurology, 24, 375.Google Scholar
Hustable, R., and Barbeau, A. (Eds.). Taurine, Raven Press, New York, pp. 1398.Google Scholar
Jacobsen, J.G., and Smith, L.L.H., (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev., 48, 424511.CrossRefGoogle ScholarPubMed
Kaczmarek, L.K., and Davison, A.N. (1972). Uptake and release of taurine from rat brain slices. J. Neurochem., 19, 23552362.CrossRefGoogle ScholarPubMed
Nevin, N.C, Hurwitz, L.J., and Neill, D.W. (1964). J. Med. Genet., 3, 265268.CrossRefGoogle Scholar
Osuntokun, B., Durowoju, J.E., McFarlane, H., and Wilson, J. (1968). Plasma amino acids in the Nigerian nutritional ataxic neuropathy. Brit. Med. J., 3, 647649.CrossRefGoogle ScholarPubMed
Pentz, P.I. (1968). Taurine excretion studies in human subjects. Biochem. Med., 2, 7086.CrossRefGoogle Scholar
Perry, T.L., Berry, K., Hansen, S., Diamond, S., and Mok, C. (1971). Regional distribution of Aminoacids in Human Brain Obtained at Autopsy. J. Neurochem. 18: 513519.CrossRefGoogle ScholarPubMed
Perry, T.L., Maclean, J., Perry, T.L. (Jr.), and Hansen, S. (1976). Effect of 3-acetyl pyridine on putative neurotransmitter amino acids in rat cerebellum. Brain Res., 109, 632635.CrossRefGoogle Scholar
Plum, C.M. (1975). Free amino acid levels in the cerebrospinal fluid of normal humans and their variation in cases of epilepsy and Spielmeyer-Vogt-Batten disease. J. Neurochem., 23, 595600.CrossRefGoogle Scholar
Robinson, N. (1968). Chemical changes in the spinal cord in Friedreich’s ataxia and motor neurone disease. J. Neurol., Neurosurg. Psychiat., 31, 330333.CrossRefGoogle ScholarPubMed
Robinson, N. (1970). Enzyme changes in the hereditary ataxic rabbit. Acta Neuropath. (Beri.), 14, 326337.CrossRefGoogle ScholarPubMed
Rylance, H.J. and Nyhall, D.R. (1971). Taurine excretion and the influence of drugs. Clin. Chim. Acta, 35, 159164.CrossRefGoogle ScholarPubMed
Scriver, C.R. and Hechtman, P. (1970). Human genetics of membrane transport with emphasis on amino acids. In: Advances in Human Genetics, Vol. 1, (Harris, H. and Hirschborn, K., eds.). Plenum Press, New York, pp. 211274.Google Scholar
Scriver, C.R., and Rosenberg, L.E. (1973). Amino acid metabolism and its disorders. In: Major Problems in Clinical Pediatrics, Vol. 10, W. B. Saunders Co., Philadelphia, pp. 1491.Google Scholar
Segal, S. (1976). Disorders of renal amino acid transport. New Engl. J. Med., 294, 10441051.CrossRefGoogle ScholarPubMed
Stanbury, J.B., Wyngaaden, J.B., and Fredrikson, D.S. (Eds.) (1972). The Metabolic Basis of Inherited Disease, McGraw-Hill, New York.Google Scholar
Weinstein, W.J., Sawin, P.G., Fox, R.R., and O’Leary, J.L. (1964). Hereditary ataxia in the rabbit: Amino acid analyses of blood and brain. J. Nerv. Ment. Dis., 139, 120125.CrossRefGoogle ScholarPubMed