Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T16:44:28.771Z Has data issue: false hasContentIssue false

The Autonomic Reflex Screen in Healthy Participants from Southwestern Ontario

Published online by Cambridge University Press:  23 September 2014

Colleen T. Ives
Affiliation:
Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada
Michael J. Berger
Affiliation:
Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
Kurt Kimpinski*
Affiliation:
Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
*
Rm. C7-131, University Hospital, London Health Sciences Centre, 339 Windermere Road, London, Ontario, N6A 5A5, Canada. Email: kkimpin@uwo.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The autonomic reflex screen (ARS) is a composite of well-defined tests of various autonomic domains and is an essential part of the diagnosis of autonomic disorders. Institutional and regional differences exist and necessitate the ongoing development of control values for the ARS. Here we present data obtained from healthy participants from Southwestern Ontario.

Methods:

A total of 121 healthy individuals underwent quantitative sudomotor axon reflex testing (QSART), heart rate response to deep breathing (HRDB), and Valsalva maneuver using standard protocols as part of the ARS.

Results:

Sweat volumes obtained during QSART are presented by site (forearm, proximal leg, distal leg and foot) and by gender. Data is expressed as the mean sweat volume per site with the associated 2.5th, 5th and 95th percentiles. Data for males and females is also stratified by age group (14-25, 26-40 and 41-76 years). Measurements of cardiovagal parasympathetic function including HRDB and Valsalva ratio are stratified by age group (14-25, 26- 40 and 41-76 years). Data is expressed as the mean with associated percentiles (2.5, 5, 95 and 97.5 percentiles).

Conclusions:

The current manuscript provides control data for the various components of the ARS to aid in the diagnosis of autonomic disorders.

Résumé

RÉSUMÉ Contexte:

La grille de dépistage des réflexes autonomes (GDRA) est composée de tests bien définis portant sur des fonctions autonomes variées et elle est une partie essentielle du diagnostic des maladies du système nerveux autonome. Il existe des différences institutionnelles et régionales, de là la nécessité d'établir des valeurs-témoins pour la GDRA. Nous présentons les données obtenues chez des sujets sains du sud-ouest de l'Ontario.

Méthode:

Un protocole standard de test quantitatif de l'axone réflexe sudomoteur (QARS), de la réponse du rythme cardiaque à la respiration profonde (RCRP) et de la manœuvre de Valsalva a été utilisé chez 121 individus en bonne santé dans le cadre de la GDRA.

Résultats:

Les volumes de sueur obtenus pendant le QARS sont présentés par région (avant-bras, région proximale de la jambe, région distale de la jambe et pied) et par sexe. Les données rapportées sont le volume de sueur moyen par région ainsi que les 2,5e, 5e et 95e percentiles. Les données pour les hommes et pour les femmes sont également stratifiées par groupe d'âge (14 à 25 ans, 26 à 40 ans et 41 à 76 ans). Les mesures de la fonction parasympathique cardiaque incluant la RCRP et le rapport de Valsalva sont également rapportés pour les mêmes groupes d'âge ainsi que la moyenne pour les percentiles 2,5e, 5e, 95e et 97,5e percentiles.

Conclusions:

Cet article présente des données témoins pour les différentes composantes de la GDRA en vue de faciliter le diagnostic des maladies du système nerveux autonome.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Low, PA. Testing the autonomic nervous system. Semin Neurol. 2003;23(4):40721.Google Scholar
2. Low, PA, Opfer-Gehrking, TL. The autonomic laboratory. Neurodiagn J. 1999;39(2):6576.Google ScholarPubMed
3. Low, PA, Sletten, DM. Laboratory evaluation of autonomic failure. In: Low PA, Benarroch EE, editors. Clinical Autonomic Disorders. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. p. 13063.Google Scholar
4. Low, PA, Denq, JC, Opfer-Gehrking, TL, Dyck, PJ, O'Brien, PC, Slezak, JM. Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve. 1997;20(12):15618.Google Scholar
5. Dong, HK, Zeldenrust, SR, Low, PA, Dyck, PJ. Quantitative sensation and autonomic test abnormalities in transthyretin amyloidosis polyneuropathy. Muscle Nerve. 2009;40(3):36370.Google Scholar
6. Kimpinski, K, Figueroa, JJ, Singer, W, et al. A prospective, 1-year follow-up study of postural tachycardia syndrome. Mayo Clin Proc. 2012;87(8):74652.Google Scholar
7. Kimpinski, K, Iodice, V, Burton, DD, et al. The role of autonomic testing in the differentiation of parkinson's disease from multiple system atrophy. J Neurol Sci. 2012;317(1–2):926.Google Scholar
8. Low, PA, Singer, W. Management of neurogenic orthostatic hypotension: An update. Lancet Neurol. 2008;7(5):4518.Google Scholar
9. Low, VA, Sandroni, P, Fealey, RD, Low, PA. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34(1):5761.CrossRefGoogle ScholarPubMed
10. Low, PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68(8):74852.Google Scholar
11. Sletten, DM, Weigand, SD, Low, PA. Relationship of Q-sweat to quantitative sudomotor axon reflex test (QSART) volumes. Muscle Nerve. 2010;41(2):2406.Google Scholar
12. Low, PA, Caskey, PE, Tuck, RR, Fealey, RD, Dyck, PJ. Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol. 1983;14(5):57380.Google Scholar
13. Low, PA, Opfer-Gehrking, TL, Proper, CJ, Zimmerman, I. The effect of aging on cardiac autonomic and postganglionic sudomotor function. Muscle Nerve. 1990;13(2):1527.Google Scholar
14. Sletten, DM, Kimpinski, K, Weigand, SD, Low, PA. A novel gel based vehicle for the delivery of acetylcholine in quantitative sudomotor axon reflex testing. Auton Neurosci. 2009;150(1-2):12730.Google Scholar
15. Sletten, DM, Kimpinski, K, Weigand, SD, Low, PA. Comparison of a gel versus solution-based vehicle for the delivery of acetylcholine in QSART. Auton Neurosci. 2010;158(1–2):1236.CrossRefGoogle ScholarPubMed
16. Abou-Zeid, E, Artibee, K, Shi, Y, Wang, L, Peltier, A. Reliability of the quantitative sudomotor axon reflex test (QSART) using QSWEAT. Neurology. 2011;76(Suppl 4).Google Scholar
17. Chen, SF, Chang, YT, Lu, CH, et al. Sweat output measurement of the post-ganglion sudomotor response by Q-sweat test: A normative database of chinese individuals. BMC Neurosci. 2012 Jun 8;13:62.Google Scholar
18. Dyck, PJ, O'Brien, PC. Procedures for setting normal values. Neurology. 1995;45(1):1723.Google Scholar
19. Braune, S, Auer, A, Schulte-Mönting, J, Schwerbrock, S, Lücking, CH. Cardiovascular parameters: Sensitivity to detect autonomic dysfunction and influence of age and sex in normal subjects. Clin Auton Res. 1996;6(1):315.Google Scholar
20. Wieling, W, van Brederode, JFM, de Rijk, LG, Borst, C, Dunning, AJ. Reflex control of heart rate in normal subjects in relation to age: A data base for cardiac vagal neuropathy. Diabetologia. 1982;22(3):1636.Google Scholar
21. Ziegler, D, Laux, G, Dannehl, K, et al. Assessment of cardiovascular autonomic function: Age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med. 1992;9(2):16675.Google Scholar
22. Berger, MJ, Kimpinski, K. Test-retest reliability and minimal detectable change for quantitative sudomotor axon reflex testing. J Clin Neurophysiol. 2013 Jun;30(3):30812.Google Scholar