Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T16:49:15.230Z Has data issue: false hasContentIssue false

Can Behenic Acid (C22:0) Levels be a Prognostic Factor in Glial Tumors?

Published online by Cambridge University Press:  23 September 2014

Metin Kaplan*
Affiliation:
Firat University, School of Medicine, Department of Neurosurgery, Malatya, Turkey
Mehmet Koparan
Affiliation:
Firat University, School of Medicine, Department of Neurosurgery, Malatya, Turkey
Aysel Sari
Affiliation:
Faculty of Arts and Sciences, Department of Chemistry, Elazig, Malatya, Turkey
Sait Ozturk
Affiliation:
Firat University, School of Medicine, Department of Neurosurgery, Malatya, Turkey
Serpil Kozan Kaplan
Affiliation:
Malatya State Hospital, Department of Pathology, Malatya, Turkey
Fatih Serhat Erol
Affiliation:
Firat University, School of Medicine, Department of Neurosurgery, Malatya, Turkey
*
Firat Universitesi T1p Fakültesi Hastanesi, beyin ve Sinir Cerrahisi Klinigi, 23200, Elaz1ğ, Turkiye. Email: mtkaplan02@yahoo.com.tr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Inhibition of fatty acid synthase leads to apoptosis in cancers, which leads to high levels of fatty acid synthesis. This indicates that cancer cells depend on fatty acid in order to survive. In this study, we investigated whether or not there was a relationship between the glial tumor grade and free fatty acid level of tumor tissue.

Methods:

Twenty patients who had high grade glial tumors and 20 patients who had low grade glial tumors, were included in the study. Tumors samples were obtained intraoperatively in order to measure the fatty acid levels. The fatty acids were studied in three groups: saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids. They were analyzed with gas chromatography.

Results:

The oleic acid, linoleic acid, eicosadienoic acid, arachidonic acid, and docosadienoic acid levels were high in the tumor tissue of low grade tumors. The myristic acid, palmitic acid, stearic acid, alpha linoleic acid, eicosenoic acid, dihomo-gamma-linolenic acid, docosahexaenoic acid, and ceramide levels were high in the tumor tissue of high grade glial tumors. However, none of these high values were statistically significant. The high values of behenic acid, a saturated fatty acid, in low grade glial tumors were statistically significant.

Conclusion:

High levels of behenic acid in patients with low grade glial tumor is important as it indicates persistence of the tissue integrity and tissue resistance. behenic acid levels can be a prognostic factor in glial tumors.

Résumé

RÉSUMÉ Contexte:

L'inhibition de l'acides gras synthase provoque l'apoptose dans les cancers ce qui entraîne un taux élevé de synthèse des acides gras. Ceci indique que les cellules cancéreuses dépendent des acides gras pour leur survie. Dans cette étude, nous avons examiné s'il existait une relation entre le grade de la tumeur gliale et le niveau d'acides gras libres dans le tissu tumoral.

Méthode:

Vingt patients porteurs de tumeurs gliales de haut grade de malignité et 20 patients porteurs de tumeurs gliales de bas grade de malignité ont été inclus dans l'étude. Des échantillons de tumeurs ont été obtenus pendant la chirurgie afin de mesurer les niveaux d'acides gras. Les acides gras ont été étudiés en trois groupes : les acides gras saturés, les acides gras monoinsaturés et les acides gras polyinsaturés. L'analyse a été réalisée par chromatographie en phase gazeuse.

Résultats:

les niveaux d'acide oléique, d'acide linoléique, d'acide eicosadiénoïque, d'acide arachidonique et d'acide docosadiénoïque étaient élevés dans le tissu tumoral provenant des tumeurs de bas grade de malignité. Les niveaux d'acide myristique, d'acide palmitique, d'acide stéarique, d'acide alpha-linoléique, d'acide eicosanoïque, d'acide dihomo-gamma-linolénique, d'acide docosahexaénoïque et de céramides étaient élevés dans le tissu tumoral provenant de gliomes de haut grade de malignité. Cependant, aucune de ces valeurs élevées n'atteignait le seuil de la signification au point de vue statistique. Les valeurs élevées d'acide béhénique, un acide gras saturé, dans les tumeurs gliales de bas grade de malignité étaient significatives au point de vue statistique.

Conclusions:

Cet article présente des données témoins pour les différentes composantes de la GDRA en vue de faciliter le diagnostic des maladies du système nerveux autonome.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Inui, A. Cancer anorexia-cachexia syndrome: Current issues in research and management. CA Cancer J Clin. 2002;52(2):7291.Google Scholar
2. Leaver, HA, Wharton, SB, Bell, HS, Leaver-Yap, IM, Whittle, IR. Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bio availability of γ linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fatty Acids. 2002;67(5):28392.Google Scholar
3. Kuhajda, FP, Jenner, K, Wood, FD, et al. Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA. 1994;91(14):637983.Google Scholar
4. Rashid, A, Pizer, ES, Moga, M, et al. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol. 1997;150(1):2018.Google Scholar
5. Zhou, W, Simpson, PJ, McFadden, JM, et al. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res. 2003;63(21):73307.Google Scholar
6. Jiang, WG, Bryce, RP, Horrobin, DF. Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit Rev Oncol Hematol. 1998;27(3):179209.Google Scholar
7. Hara, A, Radin, NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem. 1978;90(1):4206.CrossRefGoogle ScholarPubMed
8. Christie, WW. Gas chromatography and lipids – a pratical guide. Scotland: The Oil Press; 1989. p. 6670.Google Scholar
9. Murphy, MG. Dietary fatty acids and membrane protein function. J Nutr Biochem. 1990;1(2):6879.Google Scholar
10. Reddy, BS, Watanabe, K, Weisburger, JH, Wynder, EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977;37(9):323842.Google Scholar
11. Fay, MP, Freedman, LS, Clifford, CK, Midthune, DN. Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res. 1997;57(18):397988.Google Scholar
12. West, JD, Marnett, LJ. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol. 2006;19(2):17394.Google Scholar
13. Jump, DB. Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci. 2004;41(1):4178.Google Scholar
14. Contreras, FX, Ernst, AM, Wieland, F, Brügger, B. Specificity of intramembrane protein-lipid interactions. Cold Spring Harb Perspect Biol. 2011;3(6):118.Google Scholar
15. McIntosh, TJ. Overview of membrane rafts. Methods Mol Biol. 2007;398:17.Google Scholar
16. Spector, AA, Yorek, MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):101535.Google Scholar
17. Xia, SH, Wang, J, Kang, JX. Decreased n–6/n–3 fatty acid ratio reduces the invasive potential of human lung cancer cells by down-regulation of cell adhesion/invasion-related genes. Carcinogenesis. 2005;26(4):77984.Google Scholar
18. Jiang, WG, Bryce, RP, Mansel, RE. Gamma linolenic acid regulates gap junction communication in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fatty Acids. 1997;56(4):30716.Google Scholar