Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T23:54:04.746Z Has data issue: false hasContentIssue false

Emerging Treatments: Replacement Therapy with Choline or Lecithin in Neurological Diseases

Published online by Cambridge University Press:  18 September 2015

A. Barbeau*
Affiliation:
Clinical Research Institute of Montreal and the University of Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada, H2W 1R7
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review evaluates the theoretical background and experimental data behind a new development: the replacement therapy of deficient central cholinergic systems with the dietary precursors choline or lecithin. Cholinergic deficiency states are possibly present in five neurological entities: Huntington's chorea, Tardive Dyskinesia, Gilles de la Tourette's disease, Friedreich's ataxia and presenile dementia. Preliminary data from various laboratories, including our own, in each of these disorders indicate that some clinical improvement can occasionally be seen, and that this approach deserves further investigation.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1978

References

REFERENCES

Agid, Y., Guyenet, P., Glowinski, J., Beaujouan, J. C. and Javoy, F. (1975). Inhibitory influence of the nigrostriatal dopamine system on the striatal cholinergic neurons in the rat. Brain Res. 86: 488492.Google Scholar
Albanus, L. (1970). Studies on central and peripheral effects of anticholinergic drugs. FOA reports 4: 117.Google Scholar
Anonymous Editorial. Cholinergic involvement in senile dementia. Lancet 1: 408.Google Scholar
Aquilonius, S.M. and EckernàS, S.A. (1975). Plasma concentration of free choline in patients with Huntington’s chorea on high doses of choline chloride. New Engl. J. Med. 293: 11051106.Google Scholar
Aquilonius, S.M. and Sjostrom, R. (1971). Cholinergic and dopaminergic mechanisms in Huntington’s chorea. Life Sci. 10: 405414.Google Scholar
Barbeau, A. (1962). The pathogenesis of Parkinson’s disease: a new hypothesis. Can Med. Ass. J. 87: 802807.Google Scholar
Barbeau, A. (1969). L-DOPA therapy in Parkinson’s disease: a critical review of nine years experience. Can. Med. Ass. J. 101: 791800.Google Scholar
Barbeau, A. (1973a). Biochemistry of Huntington’s chorea. Advances in Neurol. 1: 473516.Google Scholar
Barbeau, A. (1973b). Biology of the striatum. In: Biology of Brain Dysfunction (Gaull, G.E., ed.) Plenum Press, New York 2: 333350.Google Scholar
Barbeau, A. (1974). Drugs affecting movement disorders. Annual Rev. Pharmac. 14: 91113.Google Scholar
Barbeau, A. (1975). Preliminary studies on pyruvate metabolism in Friedreich’s ataxia. Trans. Am. Neurol. Ass. 100: 164165.Google Scholar
Barbeau, A. (1976a). 6 years of high level Levodopa therapy in severely akinetic parkinsonian patients. Arch. Neurol. 33: 333338.CrossRefGoogle Scholar
Barbeau, A. (1976b). Progress in Understanding and Treating Parkinson’s disease. Can. J. Neurol. Sci. 3: 8184.Google Scholar
Barbeau, A. (1976c). Neurological and psychiatric side-effects of L-DOPA. Pharmac. Ther. (C) 1: 475494.Google Scholar
Barbeau, A. (1976d). Recent developments in Parkinson's disease and Huntington’s chorea. Int. J. Neurol. 11: 1727.Google ScholarPubMed
Barbeau, A., Butterworth, R.F., Ngo, T., Breton, G., Melancon, S., Shapcott, D., Geoffroy, G. and Lemieux, B. (1976). Pyruvate Metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci. 3: 379388.Google Scholar
Barbeau, A., Inoue, N., Tsukada, Y. and Butterworth, R.F. (1975). The neuropharmacology of taurine. Life Sci. 17: 669678.Google Scholar
Barbeau, A. and Roy, M. (1976). Six year results of treatment with Levodopa plus benzerazide in Parkinson’s disease. Neurology 26: 399404.CrossRefGoogle ScholarPubMed
Barker, L.A. and Mittag, T.W. (1975). Comparative studies of substrates and inhibitors of choline transport and choline acetyltransferase. J. Pharmacol. Exptl. Ther. 192: 8694.Google ScholarPubMed
Bird, E.D., Iversen, L.L. (1974). Huntington’s chorea. Postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97: 457472.Google Scholar
Blass, J.P., Kark, R.A.P. and Menon, N.K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl. J. Med. 295: 6267.CrossRefGoogle ScholarPubMed
Bowen, D. M., Smith, C. B., White, P. and Davison, A. N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459496.Google Scholar
Carroll, P.T. and Buterbaugh, G.G. (1975). Regional differences in high affinity choline transport velocity in guinea-pig brain. J. Neurochem. 24: 229232.Google Scholar
Cohen, E.L. and Wurtman, R. J. (1975). Brain acetyl choline; increase after systemic choline administration. Life Sci. 16: 10951102.Google Scholar
Cohen, E.L. and Wurtman, R.J. (1976). Brain acetyl choline: control by dietary choline. Science 191: 561562.Google Scholar
Cools, A.R., Hendrika, G. and Korten, J. (1975). The acetyl choline-dopamine balance in the basal ganglia of Rhesus Monkeys and its role in dynamic, dystonic, dyskinetic and epileptoid motor activities. J. Neurol. Transm. 36: 91105.Google Scholar
Crane, G.E. (1973). Is tardive dyskinesia a drug effect? Am. J. Psychiat. 130: 1043.Google Scholar
Crane, G.E. and Smeets, R. A. (1974). Tardive dyskinesia and drug therapy in geriatric patients. Arch. Gen. Psychiat. 30: 341343.CrossRefGoogle ScholarPubMed
Davis, K.L., Berger, P. A. and Hollister, L.E. (1975). Choline for tardive dyskinesia. New Engl. J. Med. 293: 152.Google Scholar
Davies, P. and Maloney, A.J.F. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403.Google Scholar
Davis, K.L. Hollister, L. E., Barchas, J. D. and Berger, P. A. (1976). Choline in tardive dyskinesia and Huntington’s disease. Life Sci. 19: 15071516.Google Scholar
De Lean, J. and Richardson, J.C. (1975). Relief of myoclonus by L-tryptophan. Lancet 2: 870871.Google Scholar
Dreyfuss, P.M. and Hauser, G. (1965). The effect of thiamine deficiency on the pyruvate decarboxylase system of the central nervous system. Biochem. Biophys. Acta 104: 7884.Google Scholar
Duvoisin, R.C. (1967). Cholinergic — anticholinergic antagonism in Parkinsonism. Arch. Neurol. 17: 124136.Google Scholar
Duvoisin, R.C. and Katz, R. (1968). Reversal of Central Anticholinergic Syndrome in man by Physostigmine. J. Am. Med. Ass. 206: 19631965.Google Scholar
Enna, S.J., Bird, E.D., Bennett, J.P., Bylund, D.B., Yamamura, H.I., Iversen, L.L., and Snyder, S.H. (1976) . Huntington’s chorea. Changes in neurotransmitter receptors in the brain. New Engl. J. Med. 294: 13051309.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. and Wurtman, R.J. (1971). Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149152.Google Scholar
Fernstrom, J.D. and Wurtman, R.J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414416.Google Scholar
Flynn, A. (1972). Cholinergic and adrenergic effects of atropine and Physostigmine on brain chemistry and learned behavior. Res. Comm. Chem. Path. Pharm. 4: 173180.Google Scholar
Fonnun, F. (1973). Recent developments in biochemical investigations of cholinergic transmission. Brain Res. 62: 497507.Google Scholar
Gibson, G.E., Jope, R. andBlass, J.P. (1975) . Decreased synthesis of acetyl choline accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148: 1723.Google Scholar
Gonce, M. and Barbeau, A. (1977). La maladie de Gilles de la Tourette. Union Med. Can. 106: 559570.Google Scholar
Greenblatt, D.J. and Shader, R.I. (1973) . Drug therapy: anticholinergics. New Engl. J. Med. 288: 12151219.Google Scholar
Growdon, J.H., Cohen, E.L. and Wurtman, R.J. (1977). Effects of oral choline administration on serum and CSF choline levels in patients with Huntington’s disease. J. Neurochem. 28: 229231.Google Scholar
Growdon, J.H., Cohen, E.L. and Wurtman, R.J. (1977). Treatment of brain disease with dietary precursors of neurotransmitters. Ann. Int. Med. 86: 337339.Google Scholar
Haubrich, D.R., Wang, P.F.L., Chippendale, T. and Proctor, E. (1976) . Choline and acetyl choline in rats: effect of dietary choline. J. Neurochem. 27: 13051313.Google Scholar
Hirsch, M.J., Growdon, J. and Wurtman, R.J. (1977). Increase in hip-pocampal acetyl choline after choline administration. Brain Res. 125 (2): 383385.Google Scholar
Huxtable, R. and Barbeau, A. (1976) (Eds.). Taurine. Raven Press, New York, pp. 1398.Google Scholar
Jurna, I. (1976). The cholinergic rigidity. Pharmac. Therap. B. 2: 413421.Google Scholar
Kark, R.A.P., Blass, J.P. and Spence, M.A.. (1977). Physostigmine in familial ataxias. Neurology 27: 7072.Google Scholar
Klawans, H.L. (1969). The pharmacology of parkinsonism. Dis. New Syst. 29: 805816.Google Scholar
Klawans, H. L. and Rubovits, R. (1972). Central cholinergic-anticholinergic antagonism in Huntington’s chorea. Neurology 22: 107116.CrossRefGoogle ScholarPubMed
McGeer, P.L., Boulding, J.E., Gibson, W.C. and Foulkes, R.G. (1961). Drug-induced extrapyramidal reactions. Treatment with diphenhydramine hydrochloride and dihydroxyphenylalanine. J. Am. Med. Ass. 177: 665670.Google Scholar
McGeer, P.L., Hattori, T., Fibiger, H.C, Mcgeer, E.G. and Singh, V.K. (1974). Interconnections of dopamine, GABA, and acetyl choline neurons of the extrapyramidal system. J. Pharmac. 5 (Suppl. 1): 54.Google Scholar
McGeer, P.L., McGeer, E.G. and Fibiger, H.C. (1973). Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. Neurology 23: 912917.Google Scholar
Mann, S.P. and Hebb, C. (1977). Free choline in the brain of the rat. J. Neurochem. 28: 241244.Google Scholar
Miller, E.M. (1974). Deanol: a solution for tardive dyskinesia? New Engl. J. Med. 291: 796797.Google Scholar
Ngo, T.T., Tunnicliff, G., YamC,F. C,F., Charbonneau, M. and Barbeau, A. (1977). The inhibition of human plasma acetyl cholinesterase by thiamine and choline: a rationale for their potential use in the treatment of cholinergic deficiency diseases. Clin. Sci. Mol. Med. in press.Google Scholar
Olivier, A., Parent, A., Simard, H. and Poirier, L. J. (1970). Cholinesterasic striatopallidal and striatonigral efferents in the cat and the monkey. Brain Res. 18: 273282.Google Scholar
Pasantes-Morales, H., Bonaventure, N., Wioland, N. and Mandel, P. (1973). Effect of intravitreal injections of taurine and GABA on chicken electroretinogram. Int. J. Neurosci. 5: 235241.Google Scholar
Perry, T. L., Hansen, S. and Kloster, M. (1973). Huntington’s chorea: deficiency of γaminobutyric acid in the brain. New Engl. J. Med. 288: 337342.Google Scholar
Perry, E.K. Perry, R.H., Blessed, G. and Tomlinson, B.E. (1977). Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1: 189.Google Scholar
Safer, D.J. and Allen, R.P. (1971). The central effect of Scopolamine in man. Biolog. Psychiat. 3: 347355.Google Scholar
Shute, C.C.D. and Lewis, P.R. (1963). Cholinesterase-containing systems of the brain of the rat. Nature 199: 11601164.Google Scholar
Simpson, L.L. (1974). The use of neuropoisons in the study of cholinergic transmission. Ann Rev. Pharmac. 14: 305317.Google Scholar
Snyder, B.D. (1975). Physostigmine: antidote for anticholinergic poisoning. Minn. Med. 58: 456457.Google Scholar
Snyder, S.H., Chang, K.J., Kuhar, M.J. and Yamamura, H.I. (1975). Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed. Proc. 34: 19151921.Google Scholar
Stahl, W.L. and Swanson, P.D. (1974). Biochemical abnormalities in Huntington’s chorea brains. Neurology 24: 813819.Google Scholar
Stark, P. and Henderson, J.K. (1972). Central cholinergic suppression of hyperreactivity and aggression in septal-lesioned rats. Neuropharmacol. 11: 839847.Google Scholar
Stavinoha, W. B. and Weintraub, S.T. (1974). Choline content of rat brain. Science, 183: 964965.CrossRefGoogle ScholarPubMed
Tarsy, D., Leopold, N. andSax, D.S. (1974). Physostigmine in choreiform movement disorders. Neurology 24: 2833.Google Scholar
Ulus, I. and Wurtman, R.J. (1976). Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 194: 10601061.Google Scholar
Van Gelder, N. M., Sherwin, A.L. and Rasmussen, T. (1972). Amino acid content of epileptogenic human brain: focal versus surrounding regions. Brain Res. 40: 385393.Google Scholar
Van Woert, M.H. and Sethy, V.M. (1974). Treatment of post-anoxic intention myoclonus. Lancet 1: 1285.Google Scholar
Wurtman, R.J., Hirsch, M.J., and Growdon, J.H. (1977). Lecithin consumption raises serum-free choline levels. Lancet 2: 6869.Google Scholar
Yamamura, H.I, and Snyder, S.H. (1973). High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21: 13551374.Google Scholar