Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:10:57.506Z Has data issue: false hasContentIssue false

Epileptiform Asymetries and Treatment Response in Juvenile Myoclonic Epilepsy

Published online by Cambridge University Press:  23 September 2016

Karine Létourneau
Affiliation:
Department of Neurology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
Cécile Cieuta-Walti
Affiliation:
Department of Neuropediatry, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
Charles Deacon*
Affiliation:
Department of Neurology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
*
Département de Neurologie, Centre Hospitalier Universitaire de Sherbrooke, 3001, 12ième avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Epileptiform electroencephalogram (EEG) asymmetries are not uncommon in juvenile myoclonic epilepsy (JME) and can contribute to the misdiagnosis of this syndrome. The objective of this study is to further characterize patients with focal or asymmetric epileptiform electroencephalographic abnormalities and more specifically in terms of response to treatment. Controversial data exists in the literature concerning this issue.

Methods:

We retrospectively reviewed clinical and EEG data of a group of consecutive JME patients followed at our Epilepsy Service. The first EEG available for each patient was reviewed blindly by two independent electroencephalographers.

Results:

Twenty-eight patients with JME were identified: 11 (39.3%) were resistant to at least one appropriate anti-epileptic drug (AED), including valproate, lamotrigine, topiramate or levetiracetam. All patients except two had generalized epileptiform abnormalities. Overall, EEG asymmetries were detected in 57.1% of the cases. The proportion of EEG asymmetries between AED-sensitive group (52.9%) and AED-resistant group (63.5%) did not reach statistical significance. Concordance between examiners for identification of EEG asymmetries was good. Analysis of patients with and without asymmetries showed no statistically significant differences in comparisons of age, family history of seizure, presence of polyspike and slow wave, photosensitivity and timing of EEG related to the onset of treatment.

Conclusion:

Asymmetric electroencephalographic abnormalities are frequent in patients with JME. These features should not be misinterpreted as being indicative of partial epilepsy. In our group, asymmetries were not associated with resistance to treatment.

Résumé

RésuméContexte:

Les asymétries épileptiformes à l'EEG sont fréquentes dans l'épilepsie myoclonique juvénile (EMJ) et peuvent contribuer à un diagnostic erroné de ce syndrome. Le but de cette étude était de mieux caractériser les patients qui ont des anomalies focales ou des anomalies asymétriques épileptiformes à l'EEG, plus particulièrement en ce qui concerne la réponse au traitement. Il existe dans la littérature des données controversées à ce sujet.

Méthodologie:

Nous avons révisé rétrospectivement les données cliniques et électroencéphalographiques d'un groupe de patients consécutifs atteints d'EMJ, suivi à notre service d'épilepsie. Le premier EEG disponible pour chaque patient a été révisé à l'aveugle par deux électroencéphalographistes indépendants.

Résultats:

Vingt-huit patients atteints d'EMJ ont été identifiés, dont 11 (39,3%) étaient résistants à au moins un médicament antiépileptique approprié (AEA), incluant le valproate, la lamotrigine, le topiramate ou le lévétiracétam. Tous les patients sauf deux avaient des anomalies épileptiformes généralisées. Dans l'ensemble, des asymétries EEG ont été détectées chez 57,1% des patients. La proportion des asymétries à l'EEG entre le groupe sensible aux AEA (52,9%) et le groupe résistant aux AEA (63,5%) n'atteignait pas le seuil de la significativité à l'analyse statistique. La concordance pour l'identification des asymétries à l'EEG entre les observateurs était bonne. L'analyse des patients avec et sans asymétries n'a pas montré de différence significative quant à l'âge, l'histoire familiale de crises convulsives, la présence de poly-pointes-ondes et d'ondes lentes, de photosensibilité et au moment où le traitement a été commencé.

Conclusion:

Les anomalies électroencéphalographiques asymétriques sont fréquentes chez les patients atteints d'EMJ. Ces particularités ne devraient pas être interprétées comme indicatrices d'une épilepsie partielle. Dans notre groupe de patients, les asymétries n'étaient pas associées à la résistance au traitement

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Janz, D. Epilepsy with impulsive petit mal (juvenile myoclonic epilepsy). Acta Neurol Scand. 1985 Nov; 72(5):449–59.3936330Google Scholar
2. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. 1989 Jul-Aug; 30(4):389–99.10.1111/j.1528-1157.1989.tb05316.x2502382Google Scholar
3. Penry, JK, Dean, JC, Riela, AR. Juvenile myoclonic epilepsy: longterm response to therapy. Epilepsia. 1989; 30 Suppl 4:S1923; discussion S24–7.Google Scholar
4. Noachtar, S, Andermann, E, Meyvisch, P, Andermann, F, Gough, WB, Schiemann-Delgado, J. Levetiracetam for the treatment of idiopathic generalized epilepsy with myoclonic seizures. Neurology. 2008 Feb 19;70(8):607–16.10.1212/01.wnl.0000297512.18364.4018285535Google Scholar
5. Marson, AG, Al-Kharusi, AM, Alwaidh, M, Appleton, R, Baker, GA, Chadwick, DW, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet. 2007 Mar 24; 369(9566):1016–26.10.1016/S0140-6736(07)60461-917382828Google Scholar
6. Lancman, ME, Asconape, JJ, Penry, JK. Clinical and EEG asymmetries in juvenile myoclonic epilepsy. Epilepsia. 1994 Mar-Apr; 35(2):302–6.10.1111/j.1528-1157.1994.tb02434.x8156948Google Scholar
7. Betting, LE, Mory, SB, Lopes-Cendes, I, Li, LM, Guerreiro, MM, Guerreiro, CA, et al. EEG features in idiopathic generalized epilepsy: clues to diagnosis. Epilepsia. 2006 Mar; 47(3):523–8.10.1111/j.1528-1167.2006.00462.x16529616Google Scholar
8. Aliberti, V, Grunewald, RA, Panayiotopoulos, CP, Chroni, E. Focal electroencephalographic abnormalities in juvenile myoclonic epilepsy. Epilepsia. 1994 Mar-Apr; 35(2):297301.10.1111/j.1528-1157.1994.tb02433.x8156947Google Scholar
9. Baise-Zung, C, Guilhoto, LM, Grossmann, RM. Juvenile myoclonic epilepsy: non-classic electroencephalographical presentation in adult patients. Eur J Neurol. 2006 Feb; 13(2):171–5.10.1111/j.1468-1331.2006.01164.x16490048Google Scholar
10. Genton, P, Gelisse, P, Thomas, P, Dravet, C. Do carbamazepine and phenytoin aggravate juvenile myoclonic epilepsy? Neurology. 2000 Oct 24;55(8):1106–9.10.1212/WNL.55.8.110611071486Google Scholar
11. Gelisse, P, Genton, P, Kuate, C, Pesenti, A, Baldy-Moulinier, M, Crespel, A. Worsening of seizures by oxcarbazepine in juvenile idiopathic generalized epilepsies. Epilepsia. 2004 Oct; 45(10):1282–6.10.1111/j.0013-9580.2004.19704.x15461683Google Scholar
12. Montalenti, E, Imperiale, D, Rovera, A, Bergamasco, B, Benna, P. Clinical features, EEG findings and diagnostic pitfalls in juvenile myoclonic epilepsy: a series of 63 patients. J Neurol Sci. 2001 Feb 15; 184(1):6570.10.1016/S0022-510X(00)00496-211231034Google Scholar
13. Lombroso, CT. Consistent EEG focalities detected in subjects with primary generalized epilepsies monitored for two decades. Epilepsia. 1997 Jul; 38(7):797812.10.1111/j.1528-1157.1997.tb01467.x9579907Google Scholar
14. Usui, N, Kotagal, P, Matsumoto, R, Kellinghaus, C, Luders, HO. Focal semiologic and electroencephalographic features in patients with juvenile myoclonic epilepsy. Epilepsia. 2005 Oct; 46(10):1668–76.10.1111/j.1528-1167.2005.00262.x16190941Google Scholar
15. Polack, PO, Guillemain, I, Hu, E, Deransart, C, Depaulis, A, Charpier, S. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci. 2007 Jun 13; 27(24):6590–9.10.1523/JNEUROSCI.0753-07.200717567820Google Scholar
16. Beaumanoir, A, Ballis, T, Varfis, G, Ansari, K. Benign epilepsy of childhood with Rolandic spikes. A clinical, electro-encephalographic, and telencephalographic study. Epilepsia. 1974 Sep; 15(3):301–15.10.1111/j.1528-1157.1974.tb04010.x4527673Google Scholar
17. Asconape, J, Penry, JK. Some clinical and EEG aspects of benign juvenile myoclonic epilepsy. Epilepsia. 1984 Feb; 25(1):108–14.10.1111/j.1528-1157.1984.tb04163.x6420145Google Scholar
18. Fernando-Dongas, MC, Radtke, RA, VanLandingham, KE, Husain, AM. Characteristics of valproic acid resistant juvenile myoclonic epilepsy. Seizure. 2000 Sep; 9(6):385–8.10.1053/seiz.2000.043210985993Google Scholar
19. Gelisse, P, Genton, P, Kuate, C, Pesenti, A, Baldy-Moulinier, M, Crespel, A. Worsening of seizures by oxcarbazepine in juvenile idiopathic generalized epilepsies. Epilepsia. 2004; 45(10):1282–6.10.1111/j.0013-9580.2004.19704.x15461683Google Scholar
20. Vendrame, M, Khurana, DS, Cruz, M, Melvin, J, Valencia, I, Legido, A, et al. Aggravation of seizures and/or EEG features in children treated with oxcarbazepine monotherapy. Epilepsia. 2007 Nov; 48(11):2116–20.10.1111/j.1528-1167.2007.01210.x17645535Google Scholar