Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T08:18:48.002Z Has data issue: false hasContentIssue false

Features Peculiar to the Trigeminal Innervation

Published online by Cambridge University Press:  18 September 2015

Timothy S. Miles*
Affiliation:
Department of Human Physiology and Pharmacology, University of Adelaide, Adelaide, South Australia, 5001
*
Department of Human Physiology and Pharmacology, University of Adelaide, G.P.O. Box 498, Adelaide, South Australia, 5001.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aspects of trigemina! sensory structure and function which are uniquely different from spinal systems are reviewed in this paper.

In the periphery, several unique arrangements of sensory receptors are seen, and appear to have unique sensory functions. The receptors in the cornea, the nasal mucosa, and the tooth pulp are morphologically unspecialized and are associated with “protopathic” sensory experiences. The important sensory functions of the mammalian vibrissae are also discussed, as well as their relationship to the anatomically distinctive cortical “barrels”.

Aspects of trigeminal proprioception are also of interest. The absence of spindles in some muscles and the unique central organization of trigeminal proprioceptive afférents in the jaw and extraocular muscles are of functional significance in the motor function of the jaw and the eye.

Trigeminal afférents are also involved in several complex autonomie reflexes. Characteristic changes in cardiovascular and respiratory function are elicited by various patterns of trigeminal sensory stimulation. These reflexes include the diving reflex, the oculo-cardiac reflex, naso-cardiorespira-tory reflexes, and the trigeminal depressor response. The clinical significance of these reflexes is discussed.

Several coordinated behavioral responses including suckling are also elicited from trigeminal afférents. The evidence implicating trigeminal afférents in eating and drinking behavior is presented.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Adolph, E. F. (1950). Thirst and its inhibition in the stomach. Journal of Physiology, London, 161, 374386.Google ScholarPubMed
Alvarado-Mallart, M. R., Batini, C., Buisseret-Delmas, C., and Corvisier, J. (1975). Trigeminal representations of the masticatory and extraocular proprioceptors as revealed by horseradish peroxidase retrograde transport. Experimental Brain Research, 23, 167179.CrossRefGoogle ScholarPubMed
Anand, B. K., and Brobeck, J. R. (1951). Hypothalamic control of food intake in rats and cats. Yale Journal of Biology and Medicine, 24, 123140.Google Scholar
Andersen, H. T. (1963a). Factors affecting the circulatory adjustments to diving. I. Water immersion. Acta physiologica scandinavica, 58, 173185.CrossRefGoogle Scholar
Andersen, H. T. (1963b). The reflex nature of the physiological adjustments to diving and their afferent pathway. Acta physiological scandinavica, 58, 263273.Google ScholarPubMed
Andersen, H. T. (1966). Physiological adaptations in diving vertebrates. Physiological Reviews, 46, 212243.Google ScholarPubMed
Anderson, D. J. (1975). Pain from dentine and pulp. British Medical Bulletin, 31, 111114.CrossRefGoogle ScholarPubMed
Anderson, D. J., Curwen, M. P., and Howard, L. V. (1958). The sensitivity of human dentin. Journal of Dental Research, 37, 669677.CrossRefGoogle ScholarPubMed
Anderson, D. J., Hannám, A. G., and Matthews, B. (1970). Sensory mechanisms in mammalian teeth and their supporting structures. Physiological Reviews, 50, 171195.CrossRefGoogle ScholarPubMed
Anderson, D. J., and Matthews, B. (1966). An investigation into the reputed desensitizing effect of applying silver nitrate and strontium chloride to human dentine. Archives of Oral Biology, 12, 417426.CrossRefGoogle Scholar
Anderson, D. J., Matthews, B., and Gorretta, C. (1967). Fluid flow through human dentine. Archives of Oral Biology, 12, 209216.CrossRefGoogle ScholarPubMed
Anderson, D. J., and Naylor, M. N. (1962). Chemical excitants of pain in human dentine and dental pulp. Archives of Oral Biology, 7, 413415.CrossRefGoogle ScholarPubMed
Andres, K. H., and Von During, M. (1973). Morphology of cutaneous receptors. In: Handbook of Sensory Physiology, 2 Sensory Systems. Edited by A. Iggo, Springer, pp 328.Google Scholar
Angell-James, J. E. and Daly, M.De, B. (1972). Reflex respiratory and cardiovascular effects of stimulation of receptors in the nose of the dog. Journal of Physiology, London, 220, 673696.CrossRefGoogle Scholar
Arwill, T., Edwall, L., Lilja, J., Olgart, L., and SVENNSON, S-E. (1973). Ultrastructure of nerves in the dentinal-pulp border zone after sensory and autonomie nerve transection in the cat. Acta odontologica scandinavica, 31, 273281.CrossRefGoogle Scholar
Aschner, B. (1908). Über einen bisher noch nicht beschriebenen Reflex vom Auge auf Kreislauf und Atmung. Verschwinden des Radialispulses bei Druck auf Auge. Wiener klinische Wochenschrift, 21, 15291530.Google Scholar
Avery, J. K. (1974). Anatomic considerations in the mechanisms of pain and sensitivity in the teeth and supporting structures. In: Mechanisms of Pain and Sensitivity in the Teeth and Supporting Tissues. Edited by A. I. Chasens and R. S. Kaslick, Fairleigh Dickinson University Press, Jersey City, pp 1623.Google Scholar
Bach-Y-Rita, P. (1972). Extraocular muscle inhibitory stretch reflex during active contraction. Archives italiennes de biologie, 110, 115.Google ScholarPubMed
Baker, R., and Llinas, R. (1971). Electro-tonic coupling between neurones in the rat mesencephalic nucleus. Journal of Physiology, London, 212, 4563.CrossRefGoogle Scholar
Batsel, H. L., and Lines, A. J. (1975). Neural mechanisms of sneeze. American Journal of Physiology, 229, 770775.CrossRefGoogle ScholarPubMed
Bennett, M. V. L. (1972). A comparison of electrically and chemically mediated transmission.Structure and Function of Synapses. Raven Press, New York, pp 221256.Google Scholar
Bergman, S. A., Campbell, J. K., and Wildenthal, K. J. (1972). “Diving reflex” in man: its relation to isometric and dynamic exercise. Journal of Applied Physiology, 33, 2735.CrossRefGoogle ScholarPubMed
Brännström, M. (1960a). Dentinal and pulpal response — I. Application of reduced pressure to exposed dentine. Acta odonto-logical scandinavica, 18, 115.Google Scholar
Brännström, M. (1960b). Dentinal and pulpal response — II. Application of an air stream of exposed dentine. Short observation period. Acta odontológica scandinavica, 18, 1728.Google Scholar
Brännström, M. (1960c). Dentinal and pulpal response — III. Application of an air stream to exposed dentine. Long observation periods. Acta odontológica scandinavica, 18, 235252.Google Scholar
Brännström, M. (1963). A hydrodynamic mechanism in the transmission of pain producing stimuli through the dentine.In: Sensory Mechanisms in Dentine, Edited by Anderson, D. J., Oxford, Permagon, pp 7379.Google Scholar
Brännström, M., Linden, L. A., and Johnson, G. (1968). Movement of dentinal and pulpal fluid caused by clinical procedures. Journal of Dental Research, 47, 679682.CrossRefGoogle ScholarPubMed
Cauna, N., Hinderer, K. H., and Wentges, R. T. (1969). Sensory receptor organs of the human nasal respiratory mucosa. American Journal of Anatomy, 124, 187210.CrossRefGoogle ScholarPubMed
Cody, F. W. J., Harrison, L. M., Taylor, A., and Weghofer, B. (1974). Distribution of tooth receptor afférents in the mesencephalic nucleus of the fifth cranial nerve. Journal of Physiology, London, 239, 4950P.Google ScholarPubMed
Cody, F. W. J., Lee, R. W. H. and Taylor, A. (1972). A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. Journal of Physiology, London, 226, 249261.CrossRefGoogle ScholarPubMed
Collins, C. C., O'meara, D., and Scott, A. B. (1975). Muscle tension during unrestrained human eye movements. Journal of Physiology, London, 245, 351369.CrossRefGoogle ScholarPubMed
Cooper, S.Daniel, P. M. and Whitte-Ridge, D. (1955). Muscle spindles and other sensory endings in the extrinsic eye muscles, the physiology and anatomy of these receptors, and of their connections with the brainstem. Brain, 78, 564583.CrossRefGoogle ScholarPubMed
Corbin, K. B., and Harrison, F. (1940). Function of the mesencephalic root of the fifth cranial nerve. Journal of Neurophysi-ology, 3, 423435.CrossRefGoogle Scholar
Darian-Smith, I. (1973). The trigeminal system. In: Handbook of Sensory Physiology, II Somatosensory System, Edited by A. Iggo. Berlin: Springer Verlag, pp 273314.Google Scholar
Dellow, P. G. and Roberts, M. L. (1966). Bradykinin application to dentine: A study of a sensory receptor mechanism. Australian Dental Journal, 11, 384387.CrossRefGoogle ScholarPubMed
De Montigny, C., and Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olive-cerebello-bulbar system of the cat. Brain Research, 53, 8195.CrossRefGoogle ScholarPubMed
Denny-Brown, D., and Yanagisawa, N. (1973). The function of the descending root of the fifth neve. Brain, 96, 783814.CrossRefGoogle Scholar
Dmytruk, R. J. (1974). Neuromuscular spindles and depressor masticatory muscles of monkey. American Journal of Anatomy, 141, 147153.CrossRefGoogle ScholarPubMed
Dykes, R. W. (1975). Afferent fibers from mystacial vibrissae of cats and seals. Journal of Neurophysiology, 38, 650662.CrossRefGoogle ScholarPubMed
Fearnhead, R. W. (1961). The neurohisto-logy of human dentine. Proceedings of the Royal Society of Medicine, 54, 877884.CrossRefGoogle ScholarPubMed
Fillenz, M. (1955). Responses in the brain stem of the cat to stretch of extrinsic ocular muscles. Journal of Physiology, London, 128, 182199.CrossRefGoogle ScholarPubMed
Frank, R. M. (1966). Étude au microscope électronique de l'odontoblaste et du canalicule dentinaire humain. Archives of Oral Biology, 11, 179199.CrossRefGoogle Scholar
Freimann, R. (1954). Untersuchungen über Zahl und Anordnung der Muskelspindeln in den Kaumuskeln des Menchen. Anatomischer Anzeiger, 100, 258264.Google Scholar
Von Frey, M. (1894). Beiträge zur Physiologie des Schmerzsinns. Berichte über die Verhandlungen der Kgl. sächsischen Geselschaft der Wissenschaften zu Leipzig, 46, 185196.Google Scholar
Gandevia, S. C., McCloskey, D. I., and Potter, E. K. (1978). Reflex bradycardia occurring in response to diving, nasophar-nageal stimulation and ocular pressure, and its modification by respiration and swallowing. Journal of Physiology, London, in press.CrossRefGoogle ScholarPubMed
Gill, H. I. (1971). Neuromuscular spindles in human lateral pterygoid muscles. Journal of Anatomy, 109, 157167.Google ScholarPubMed
Godaux, E., and Desmedt, J. E. (1975). Human masseter muscle: H- and tendon reflexes. Archives of Neurology 32, 229234.CrossRefGoogle ScholarPubMed
Hinrichsen, C. F. L., and Larra-Mendi, L. M. H. (1969). Features of trigeminal mesencephalic nucleus structure and organization. American Journal of Anatomy, 126, 497506.CrossRefGoogle ScholarPubMed
Van Horn, R. N. (1970). Vibrissae structure in the rhesus monkey. Folia Primatoligica, 13, 241285.CrossRefGoogle ScholarPubMed
Johnson, P., Robinson, J. S., and Salisbury, D. (1973). The onset and control of breathing after birth.In: Foetal and Neonatal Physiology. Proceedings of the Sir Joseph Barcroft Centenary Symposium, Edited by Comline, K. S., Cross, K. W., Daws, G. S. and Nathanielsz, P. W.. University Press, Cambridge.Google Scholar
Karlsen, K. (1969). Muscle spindles in the lateral pterygoid muscles of a monkey. Archives of Oral Biology, 14, 11111112.CrossRefGoogle ScholarPubMed
Katz, R. L., and Bigger, J. T. (1970). Cardiac arrhythmias during anaesthesia and operation. Anesthesiology, 33, 193213.CrossRefGoogle ScholarPubMed
Kerr, F. W. L.,and Lysack, W. R. (1964). Somatotopic organization of trigeminal ganglion neurons. Archives of Neurology, Chicago, 11, 593602.CrossRefGoogle Scholar
Klinke, R., and Galley, N. (1974). Efferent innervation of vestibular and auditory receptors. Physiological Reviews, 54, 316357.CrossRefGoogle ScholarPubMed
Korn, H., Sotelo, C., and Crepel, F. (1973). Electrotonic coupling between neurons in the rat lateral vestibular nucleus. Experimental Brain Research, 16, 255275.CrossRefGoogle Scholar
Kumada, N., Dampney, R. A. L. and Reis, D. (1977). The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system. Brain Research, 119, 305326.CrossRefGoogle ScholarPubMed
Lele, P. P., and Weddell, G. (1956). The relationship between neurohistology and corneal sensibility. Brain, 79, 119154.CrossRefGoogle ScholarPubMed
Lennerstrand, G., and Bach-Y-Rita, P. (1974). Spindle responses in pig eye muscles. Acta physiologica scandinavica, 90, 795797.CrossRefGoogle ScholarPubMed
Levine, S. A. (1951). Clinical Heart Disease, 5th Edition. Edited by W. B. Saunders Co., Philadelphia, p 271.Google Scholar
Ling, J. K. (1966). The skin and hair of the southern elephant seal, Mirounga leonina (Linn.). I. The facial vibrissae. Australian Journal of Zoology, 14, 855866.Google Scholar
Llinas, R., Baker, R., and Sotelo, C. (1973). Electrotonic coupling between neurones in cat inferior olive. Journal of Neurophysiology, 37, 560571.CrossRefGoogle Scholar
Manni, E., Bartolami, R., and Desole, C. (1968). Peripheral pathway of eye muscle proprioception. Experimental Neurology, 22, 112.CrossRefGoogle ScholarPubMed
Matsunami, K., and Kobota, K. (1972). Muscle afférents of trigeminal mesencephalic tract nucleus and mastication in chronic monkeys. Japanese Journal of Physiology, 22, 545555.Google ScholarPubMed
Matthews, P. B. C. (1964). Muscle spindles and their motor control. Physiological Reviews, 44, 219288.Google ScholarPubMed
Matthews, B., and Holland, G. R. (1975). Coupling between nerves in teeth. Brain Research, 98, 354358.Google ScholarPubMed
McIntyre, A. K. (1951). Afferent limb of the myotatic reflex arc. Nature, London, 168, 168169.CrossRefGoogle ScholarPubMed
Meessen, H., and Olzewski, J. (1949). A Cytoarchitectonic Atlas of the Rhombencephalon of the Rabbit. Basel: Karger.Google Scholar
Melzack, R., and Eisenberg, H. (1968). Sensory skin afterglows. Science, 159, 445447.Google ScholarPubMed
Moore, T. O., Lin, Y. C., Lally, D. A., and Hong, S. K.(1972). Effects of temperature, immersion and ambient pressure on human apneic bradycardia. Journal of Applied Physiology, 33, 3641.CrossRefGoogle ScholarPubMed
Mumford, J. M., and Bowsher, D. (1976). Pain and protopathic sensibility. A review with particular reference to the teeth. Pain, 2, 223243.Google ScholarPubMed
Nemirof, M. (1977). Cold waterdrowning:a new lease of life. United States Department of Transport Report MICHU-SG-77-104, CG-513.Google Scholar
Patrizi, A., and Munger, B. (1966). The ultrastructure and innervation of rat vibrissae. Journal of Comparative Neurology, 126, 423436.CrossRefGoogle ScholarPubMed
Peiper, A. (1963). Sucking and rooting behaviour. In: Cerebral Function in Infancy and Childhood. Pitman Medical Publishing Co., London, pp. 403416.Google Scholar
Pimenidis, M. Z., and Hinds, J. W. (1977). An autoradiographic study of the sensory innervation of teeth. I. Dentin. Journal of Dental Research, 56, 827834.CrossRefGoogle ScholarPubMed
Poulter, T. C. (1972). Sea lion vibrissae — an acoustic sensor. Proceedings of the Annual Conference on Biological Sonar and Diving Mammals, 9th, Stanford Research Institute, Menlo Park, California, pp 95105.Google Scholar
Ramón, YCajal, S. (1909). Histologie du système nerveux de l'homme et des vertébrés. Paris, Malone.Google Scholar
Ramón, YCajal, S. (1952). Histologie du système nerveux de l'homme et des vertébrés. Madrid, Montana.Google Scholar
Sjöqvist, O. (1939). The conduction of pain in the fifth nerve and its bearing upon the treatment of trigeminal neuralgia. Yale Journal of Biology and Medicine, 11, 594600.Google ScholarPubMed
Smith, R. D., and Marcarían, H. W. (1967). The neuromuscular spindles of the lateral pterygoid muscle. Anatomischer Anzeiger, 120, 4753.Google ScholarPubMed
Stein, H. (1925). Welche Empfindungsqualitäten vermittelt Hornhaut und Bindehaut des Menschlichen Auges? Klinische Wochenschrift, 4, 819820.Google Scholar
Stein, R. B. (1974). Peripheral control of movement. Physiological Reviews, 54, 215243.CrossRefGoogle ScholarPubMed
Stephens, R. J., Beebe, I. J., and Poulter, T. C. (1973). Innervation of the vibrissae of the California sea lion Zalophus californianus. Anatomical Record, 176, 421442.CrossRefGoogle ScholarPubMed
Szentágothai, J. (1948). Anatomical considerations of monosynaptic reflex arcs. Journal of Neurophysiology, 11, 445453.CrossRefGoogle ScholarPubMed
Taylor, A., and Cody, F. W. J. (1974). Jaw muscle spindle activity in the cat during normal movements of eating and drinking. Brain Research, 71, 523530.CrossRefGoogle ScholarPubMed
Tchoubroutsky, C., Merlet, C., and Rey, P. (1969). The diving reflex in rabbit, sheep and newborn lamb, and its afferent pathways. Respiratory Physiology, 8, 108117.CrossRefGoogle Scholar
Tomori, Z., and Widdicombe, J. G. (1969). Muscular bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract. Journal of Physiology, London, 200, 2549.CrossRefGoogle ScholarPubMed
Van Der Loos, H. and Woolsey, T. A. (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science, 179, 395398.CrossRefGoogle ScholarPubMed
Vincent, S. B. (1912). The function of the vibrissae in the behaviour of the white rat. Behavioural Monographs, 1, 785.Google Scholar
Vincent, S. B. (1913). The tactile hair of the white rat. Journal of Comparative Neurology, 23, 136.CrossRefGoogle Scholar
Weddell, G., and Zander, E. (1950). A critical evaluation of methods used to demonstrate tissue neural elements, illustrated by reference to the cornea. Journal of Anatomy, London, 84, 168195.Google ScholarPubMed
Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality.In: The Skin Senses, Edited by Kenshalo, D., Springfield, III. Thomas, pp 195219.Google Scholar
White, S. W., and McRitchie, R. J. (1973). Nasopharyngeal reflexes: integrative analysis of evoked respiratory and cardiovascular effects. Australian Journal of Experimental Biology and Medical Science, 51, 1731.CrossRefGoogle ScholarPubMed
Wildenthal, K., Leshin, S. J., Atkins, J. M., and Skelton, C. L. (1975). The diving reflex used to treat paroxysmal atrial tachycardia. Lancet, i, 1214.CrossRefGoogle ScholarPubMed
Woolsey, T. A.Welker, C., and Schwartz, R. H. (1975). Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IV. Journal of Comparative Neurology, 164, 7994.CrossRefGoogle Scholar
Woolsey, T. A., and Van Der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Research, 17, 205242.CrossRefGoogle ScholarPubMed
Yokota, T. (1972). Trigemino-vagal reflex elicited by tactile stimulation in cats. Japanese Journal of Physiology, 22, 533543.Google Scholar
Zeigler, H. P., and Karten, H. J. (1974). Central trigeminal structures and the lateral hypothalamic syndrome in the rat. Science, 186, 636638.CrossRefGoogle ScholarPubMed
Zeigler, H. P., and Karten, H. J. (1973). Brain mechanisms and feeding behavior in the pigeon (Columbia livia). Journal of Comparative Neurology, 152, 5982.CrossRefGoogle Scholar
Zucker, E., and Welker, W. I. (1960). Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Research, 12, 138156.CrossRefGoogle Scholar