Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T16:56:49.576Z Has data issue: false hasContentIssue false

Hydrogen-Rich Saline Attenuated Neuropathic Pain by Reducing Oxidative Stress

Published online by Cambridge University Press:  23 September 2014

Qianbo Chen
Affiliation:
Department of Anesthesiology, Changzheng Hospital, Shanghai, PR China Department of Anesthesiology, Eastern Hepatobiliary Hospital, Shanghai, PR China
Ping Chen
Affiliation:
Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, PR China
Shuangqiong Zhou
Affiliation:
Department of Anesthesiology, Changzheng Hospital, Shanghai, PR China
Xiaodi Yan
Affiliation:
Department of Anesthesiology, Changzheng Hospital, Shanghai, PR China
John Zhang
Affiliation:
Department of Neurosurgery, Loma Linda University, Loma Linda, California, United States of America
Xuejun Sun
Affiliation:
Department of Diving Medicine, Second Military Medical University, Shanghai, PR China
Hongbin Yuan*
Affiliation:
Department of Anesthesiology, Changzheng Hospital, Shanghai, PR China
Weifeng Yu*
Affiliation:
Department of Anesthesiology, Eastern Hepatobiliary Hospital, Shanghai, PR China
*
Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China. Email: jfjczyy@aliyun.com
Department of Anesthesiology, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, 200433, PR China. Email:ywf808@yeah.net.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Reactive oxygen species (ROS) are often associated with persistent pains such as neuropathic and inflammatory pain. Hydrogen gas can reduce ROS and alleviate cerebral, myocardial, and hepatic ischemia/reperfusion injuries. In the present study, we aim to investigate whether hydrogen-rich saline can reduce neuropathic pain in a rat model of chronic constriction injury (CCI).

Methods:

Thirty SD rats were randomly divided into three groups: sham group was administered sodium chloride by intrathecal injection (n=10); control groups underwent CCI surgery and were administered sodium chloride by intrathecal injection (n=10); vehicle group underwent CCI surgery and was administered hydrogen-rich saline by intrathecal injection (n=10). Drugs were administered in the dose of 100ul/kg once a day at 0.5 hours before and 1-7 day after CCI surgery. The mechanical thresholds were tested at one day before and 3-14 day after CCI surgery.

Results:

We found that hydrogen-rich saline significantly elevated the mechanical thresholds of neuropathic pain compared to vehicle (physiologic saline) control in CCI rats (p<0.05); it also decreased the levels of myeloperoxidase, maleic dialdehyde, and protein carbonyl in spinal cord by 7 days post-chronic constriction injury(p<0.05). In addition, hydrogen-rich saline also suppressed the expression of p38-mitogen-activated protein kinase (p38MAPK) and brain-derived neurotrophic factor (BDNF) in the spinal cord by 7 days post-chronic constriction injury (p<0.01, p<0.01, respectively), but had no effect on P2X4R (p>0.05), an ATP receptor.

Conclusion:

Intrathecal injection of hydrogen-rich saline can decrease oxidative stress and the expression of p38MAPK and BDNF that may contribute to the elevated threshold of neuropathic pain in rat CCI model.

Résumé

RÉSUMÉ Contexte:

Les espèces réactives oxygénées (ROS) sont souvent associées à la douleur persistante comme la douleur névropathique et la douleur inflammatoire. Le gaz hydrogène peut réduire les ROS et soulager le dommage dû à l'ischémie/la reperfusion au niveau cérébral, myocardique et hépatique. Le but de cette étude était de déterminer si le salin riche en hydrogène peut réduire la douleur névropathique chez un modèle de lésion par constriction chronique (LCC) chez le rat.

Méthode:

Trente rats SD ont été assignés au hasard à trois groupes : un groupe a subi une intervention factice et a reçu du chlorure de sodium en injection intrathécale (n = 10) ; un groupe a subi une LCC et a reçu du chlorure de sodium en injection intrathécale (n = 10) ; un groupe a subi une LCC et a reçu du salin riche en hydrogène en injection intrathécale (n = 10). Les solutions ont été administrées à la dose de 100/il/KG une fois par jour 0,5 heure avant la LCC et du jour 1 au jour 7 après l'intervention. Les seuils mécaniques ont été évalués 1 jour avant et du jour 3 au jour 14 après la LCC.

Résultats:

Nous avons constaté que le salin riche en hydrogène augmentait significativement le seuil mécanique de la douleur névropathique par rapport au témoin (le salin physiologique) chez les rats ayant subi une LCC (p ˂ 0,05). Il diminuait également les niveaux de myéloperoxydase, de dialdéhyde maléique et de protéines carbonylées dans la moelle épinière 7 jours après la LCC (p ˂ 0,05). De plus, le salin riche en hydrogène supprimait également l'expression de la protéine kinase activée par le mitogène p38 (MAPK p38) et le facteur neurotrope dérivé du cerveau (BDNF) dans la moelle épinière au 7e jour après la LCC (p ˂ 0,01 et p ˂ 0,01 respectivement), mais n'avait aucun effet sur P2X4R (p ˃ 0,05), un récepteur de l'ATP.

Conclusion:

L'injection intrathécale de salin riche en hydrogène peut diminuer le stress oxydatif et l'expression de MAPK p38 et de BDNT, ce qui pourrait contribuer à l'élévation du seuil de la douleur névropathique chez le modèle de rat ayant subi une LCC.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Gao, X, Kim, HK, Chung, JM, Chung, K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain. 2007;131(3):26271.Google Scholar
2. Kim, HK, Park, SK, Zhou, JL, et al. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111(1–2):11624.Google Scholar
3. Salvemini, D, Wang, ZQ, Zweier, JL, et al. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999;286(5438):3046.CrossRefGoogle ScholarPubMed
4. Tal, M. A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful peripheral neuropathy. Neuroreport. 1996;7(8):13824.CrossRefGoogle ScholarPubMed
5. Wang, ZQ, Porreca, F, Cuzzocrea, S, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004; 309(3):86978.Google Scholar
6. Park, ES, Gao, X, Chung, JM, Chung, K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett. 2006;391(3):10811.CrossRefGoogle ScholarPubMed
7. Kim, HK, Kim, JH, Gao, X, et al. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006;122(1–2):5362.Google Scholar
8. Ko, YK, Youn, AM, Hong, BH, et al. Antinociceptive effect of phenyl N-tert-butylnitrone, a free radical scavenger, on the rat formalin test. Korean J Anesthesiol. 2012;62(6):55864.CrossRefGoogle ScholarPubMed
9. Ohsawa, I, Ishikawa, M, Takahashi, K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):68894.CrossRefGoogle ScholarPubMed
10. Buchholz, BM, Kaczorowski, DJ, Sugimoto, R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8(10):201524.CrossRefGoogle Scholar
11. Zheng, X, Mao, Y, Cai, J, et al. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res. 2009;43(5):47884.CrossRefGoogle ScholarPubMed
12. Hayashida, K, Sano, M, Ohsawa, I, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008;373(1):305.Google Scholar
13. Cai, J, Kang, Z, Liu, K, et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res. 2009;1256:12937.CrossRefGoogle ScholarPubMed
14. Bennett, GJ, Xie, YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87107.CrossRefGoogle ScholarPubMed
15. Dixon, WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:44162.CrossRefGoogle ScholarPubMed
16. Chaplan, SR, Bach, FW, Pogrel, JW, Chung, JM, Yaksh, TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):5563.CrossRefGoogle ScholarPubMed
17. Ohkawa, H, Ohishi, N, Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):3518.CrossRefGoogle ScholarPubMed
18. Mao, YF, Yan, N, Xu, H, Sun, JH, Xiong, YC, Deng, XM. Edaravone, a free radical scavenger, is effective on neuropathic pain in rats. Brain Res. 2009;1248:6875.CrossRefGoogle ScholarPubMed
19. Ohsawa, I, Nishimaki, K, Yamagata, K, Ishikawa, M, Ohta, S. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008;377(4):11958.CrossRefGoogle ScholarPubMed
20. Sun, Q, Kang, Z, Cai, J, et al. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood). 2009;234(10):12129.Google Scholar
21. Wood, KC, Gladwin, MT. The hydrogen highway to reperfusion therapy. Nat Med. 2007;13(6):6734.CrossRefGoogle ScholarPubMed
22. Khalil, Z, Liu, T, Helme, RD. Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain. 1999;79(1):317.CrossRefGoogle Scholar
23. Khalil, Z, Khodr, B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Radic Biol Med. 2001;31(4):4309.Google Scholar
24. Ulmann, L, Hatcher, JP, Hughes, JP, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008;28(44):112638.CrossRefGoogle ScholarPubMed
25. Bernier, LP, Blais, D, Boue-Grabot, E, Seguela, P. A dual polybasic motif determines phosphoinositide binding and regulation in the P2X channel family. PLoS One. 2012;7(7):e40595.CrossRefGoogle ScholarPubMed
26. Tsuda, M, Toyomitsu, E, Komatsu, T, et al. Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia. 2008;56(5):57985.Google Scholar
27. Choi, DC, Lee, JY, Lim, EJ, Baik, HH, Oh, TH, Yune, TY. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol. 2012;236(2):26882.Google Scholar
28. Trang, T, Beggs, S, Wan, X, Salter, MW. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci. 2009;29(11):351828.CrossRefGoogle ScholarPubMed
29. Ji, RR, Woolf, CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8(1):110.CrossRefGoogle ScholarPubMed
30. Obata, K, Yamanaka, H, Dai, Y, et al. Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats. Eur J Neurosci. 2004;20(11):288195.CrossRefGoogle ScholarPubMed
31. Rao, JS, Ertley, RN, Lee, HJ, et al. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry. 2007;12(1):3646.Google Scholar
32. Coull, JA, Beggs, S, Boudreau, D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):101721.CrossRefGoogle ScholarPubMed
33. Jin, SX, Zhuang, ZY, Woolf, CJ, Ji, RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23(10):401722.CrossRefGoogle Scholar
34. Tsuda, M, Mizokoshi, A, Shigemoto-Mogami, Y, Koizumi, S, Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004;45(1):8995.Google Scholar
35. Slack, SE, Pezet, S, McMahon, SB, Thompson, SW, Malcangio, M. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci. 2004;20(7):176978.CrossRefGoogle ScholarPubMed