No CrossRef data available.
Published online by Cambridge University Press: 17 June 2016
Background: Training of surgical residents based on the traditional Halstedian model is becoming increasingly scrutinized. The emergence of competency-based training has put pressure on training programs to provide high-fidelity simulation sessions that compliment residents’ training in the operating room. Here we present a novel combination of perfused cadaveric avian wing model in conjunction with live rats for neurosurgical resident training. Methods: The brachial artery of cadaveric duck wing was cannulated and connected to a roller pump. The duck wings remain perfused while residents performed microvascular anastomoses of the brachial and ulnar arteries. This took place prior to live rat modules. Results: The duck wing brachial artery diameter measured 1.5-2.0 mm, similar to the proximal middle cerebral artery in humans. The ulnar artery diameter measured 1.0-1.5 mm, similar to the cortical vessels. 8 interrupted stitches were placed during anastomosis using a 10-0 Nylon suture. Residents who performed the duck wing module felt more comfortable when they moved onto the live rat model with a shallower learning curve. Conclusions: The perfused cadaveric avian wing model provides intermediate to high fidelity simulation that complements the live rat model well. The number of rats needed for neurosurgical simulation training could be reduced via the use of avian wings.