Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:59:06.789Z Has data issue: false hasContentIssue false

The Quebec Cooperative Study of Friedreich's Ataxia: 1974-1984 — 10 Years of Research

Published online by Cambridge University Press:  18 September 2015

A. Barbeau*
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada, H2W 1R7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper the author reviews the progress accomplished in the understanding of Friedreich's disease since the start of the “Quebec Cooperative Study of Friedreich's Ataxia” in 1974. The last ten years have indeed seen important strides taken in the definition and nosography of the hereditary ataxias and the characterization of a number of new entities. Biochemically, the principal leads uncovered during the initial prospective survey, have been pursued to great detail. Unfortunately no clear-cut constant and severe enzyme block in the principal metabolic pathways has yet been identified, despite intensive studies. It is postulated that the defect may instead be a regulatory one and involve a decreased availability or utilization of one of the vitamin cofactors that are known experimentally, or clinically, to produce central nervous system damage with ataxia: Vitamin E, Biotin or Pantothenic Acid. Studies in that direction and in molecular genetics to localize the Friedreich's disease gene are being untertaken for the next phase of the Cooperative Study.

Type
C—Biochemistry
Copyright
Copyright © Canadian Neurological Sciences Federation 1984

References

Anaducci, L, Paci, C, de Scisciolo, G, Mariana, P (1983) Abnormal plasma lecithin cholesterol acyltransferase in hereditary ataxias. Neurology 33 (suppl. 2): 244.Google Scholar
Barbeau, A (1975) Preliminary studies on pyruvate metabolism in Friedreich’s ataxia. Trans Am Neurol Assoc 100: 164165.Google ScholarPubMed
Barbeau, A (1980) Distribution of ataxia in Quebec. In: (Japan Med. Res. Found., ed.), Spinocerebellar Degeneration, Tokyo, Univ. Tokyo Press, pp. 121142.Google Scholar
Barbeau, A, Donaldson, J (1974) Zinc, taurine and epilepsy. Arch. Neurol. 30: 5258.CrossRefGoogle ScholarPubMed
Barbeau, A, Giroux, JM (1972) Erythrokeratodermia with ataxia. Trans. Amer Neurol Ass 97: 5556.Google Scholar
Bassen, FA.Kornzweig, AL (1950) Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood 5: 381386.CrossRefGoogle Scholar
Bieri, JG, Corash, L, Hubbard, VS (1983) Medical uses of Vitamin E (Medical Progress). New Engl J Med 308: 10631071.CrossRefGoogle Scholar
Bieri, JG, Hoeg, JM, Schaffer, EJ, Zech, LA, Brewer, B (1984) Vitamin A and Vitamin E replacements in abetalipoproteinemia. Ann lnt Med 100: 238239.CrossRefGoogle ScholarPubMed
Bishara, S, Merin, S, Cooper, M, Azizi, E, Delpre, G, Deckelbaum, RJ (1982) Combined Vitamin A and E therapy prevents retinal electrophysiological deterioration in abetalipoproteinaemia. Brit J Ophthalm. 66: 767770.CrossRefGoogle Scholar
Blass, JP, Kark, RAP, Menon, NK (1976) Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl J Med 295: 6267.CrossRefGoogle ScholarPubMed
Bottachi, E, Di Donato, S (1983) Skeletal muscle NAD (P) and NADP + -dependent malic enzyme in Friedreich’s ataxia. Neurology (Clev.) 33: 712716.CrossRefGoogle Scholar
Boyer, SH, Chisholm, AW, McKusick, VA (1962) Cardiac aspects of Friedreich’s ataxia. Circulation 25: 493505.CrossRefGoogle ScholarPubMed
Bull, NL, Buss, DH (1982) Biotin, pantothenic acid and Vitamin E in the British household food supply. Human Nutrition: Applied Nutrition 36A: 190196.Google ScholarPubMed
Butterworth, RF, Giguere, JF (1982) Glutamic acid in spinal cord gray matter in Friedreich’s ataxia. New Engl J Med 307: 897.Google ScholarPubMed
Cacace, AT, Satya-Murti, S, Grimes, CT (1983) Frequency, selectivity and temporal processing in Friedreich’s ataxia — Clinical aspects in two patients. Ann Otol, Rhinol and Laryngol 92: 276280.CrossRefGoogle ScholarPubMed
Cohen, J (1974) Role of endocrine factors in the pathogenesis of cardiac hypertrophy. Circ Res 35 (suppl. 2): 4957.Google ScholarPubMed
Dijkstra, UJ, Willem, JL, Joosten, EMG, Gabreels, FJM (1983) Friedreich’s ataxia and low pyruvate carboxylase activity in liver and fibroblasts. Ann Neurol 13: 325327.CrossRefGoogle ScholarPubMed
Domschke, W, Liersch, M, Decker, K (1971) Lack of permeation of Coenzyme A from blood into liver cells. Hoppe-Seyler’s Z Physiol Chem 352-85-88.CrossRefGoogle ScholarPubMed
Dunn, HG (1973) Nerve conduction studies in children with Friedreich’s ataxia and ataxia-telangiectasia. Develop Med Child Neurol 15: 324337.CrossRefGoogle ScholarPubMed
Duvoisin, RC, Chokroverty, S, Lepore, F, Nicklas, W (1982) Glutamate dehydrogenase deficiency in patients with olivopontocerebellar atrophy. Neurology (Clev.) 33: 13221326.Google Scholar
Dyck, PJ, Lambert, EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. II Neurologic, genetic and electrophysiologic findings in various neuronal degenerations. Arch Neurol (Chic) 18: 619625.CrossRefGoogle ScholarPubMed
Elias, E, Muller, DPR (1983) Use of Vitamin E for prevention and treatment of spinocerebellar disorders. Comprehensive Ther. 9: 5660.Google ScholarPubMed
Elias, E, Muller, DPR, Scott, J (1981) Association of spinocerebellar disorders with cystic fibrosis or chronic childhood cholestasis and very low serum Vitamin E. The Lancet 2: 13191321.CrossRefGoogle ScholarPubMed
Evans, OB (1980). Muscle pyruvate oxidation in spinocerebellar denerations. Ann Neurol 8: 129.Google Scholar
Fidanza, A, Audisio, M (1982) Vitamins and lipid metabolism. Acta Vitaminol Enzymol 4: 105114.Google ScholarPubMed
Filla, A, Manfellotto, G, Brescia-Morra, V, De Michele, G, Palma, V, Campanella, G (1984) Leukocytes glutamate dehydrogenase in inherited ataxias. Acta Neurol — in press.Google Scholar
Filla, A, Postiglione, A, Rubba, P, Patti, L, De Michelle, G, Palma, V, Brescia-Morra, V, Campanella, G (1980) Plasma lipoprotein concentration and erythrocyte membrane lipids in patients with Friedreich’s ataxia. Acta Neurol (NS) 2: 382389.Google ScholarPubMed
Gibson, GE, Jope, R, Blass, JP (1975) Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J 148: 1723.CrossRefGoogle ScholarPubMed
Giroux, JM, Barbeau, A (1972) Erythrokeratodermia with ataxia. Arch Derm 106: 183188.CrossRefGoogle ScholarPubMed
Goodman, HD, Connolly, BM, McLean, W, Resnick, M (1980) Taurine transport in epilepsy. Clin Chem 26: 414419.CrossRefGoogle ScholarPubMed
Gusella, JF, Wexler, NS, Conneally, PM, Naylor, SL, Anderson, MA, Tanzi, RE, Watkins, PC, Ottina, K, Wallace, MR, Sakaguchi, AY, Young, AB, Shoulson, I, Bonilla, E, Martin, JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306: 234238.CrossRefGoogle ScholarPubMed
Harding, AE, Muller, DPR, Thomas, PK, Willison, HJ (1982) Spinocerebellar degeneration secondary to chronic intestinal malabsorption: A Vitamin E deficiency syndrome. Ann Neurol 12: 419424.CrossRefGoogle ScholarPubMed
Hewre, RL (1968) Study of fatal cases of Friedreich’s ataxia. Brit Med J 3: 649652.CrossRefGoogle Scholar
Hewer, RL (1969) The heart in Friedreich’s ataxia. Brit Heart J 31: 514.CrossRefGoogle ScholarPubMed
Hughes, JT, Brownell, B, Hewer, RL (1968) The peripheral sensory pathway in Friedreich’s ataxia. An examination by light and electron microscopy of the posterior nerve roots, posterior root ganglia, and peripheral sensory nerves in cases of Friedreich’s ataxia. Brain 91: 803818.CrossRefGoogle ScholarPubMed
Hurley, LS, Vokert, NE (1965) Pantothenic acid deficiency in guinea pigs during gestation. Biochem Biophys Acta 104: 372375.CrossRefGoogle Scholar
Jabbari, B, Schwartz, DM, MacNeil, DM, Coker, SB (1983) Early abnormalities of brainstem auditory evoked potentials in Friedreich’s ataxia: evidence of primary brainstem dysfunction. Neurology (Clev.) 33: 10711074.CrossRefGoogle ScholarPubMed
Kark, RAP, Blass, JP, Engel, WK (1974) Pyruvate oxidation in neuromuscular disease - Evidence for a genetic defect in two families with the clinical syndrome of Friedreich’s ataxia. Neurology 24: 964971.CrossRefGoogle ScholarPubMed
Kark, RAP, Blass, JP, Spence, MA (1977) Physostigmine in familial ataxias. Neurology 27: 7072.CrossRefGoogle ScholarPubMed
Kark, RAP, Rodriguez-Budelli, M (1979a) Pyruvate dehydrogenase deficiency in spinocerebellar degenerations. Neurology 29: 126131.CrossRefGoogle ScholarPubMed
Kark, RAP, Rodriguez-Budelli, M (1979b) Clinical correlations of partial deficiency of lipoamide dehydrogenase. Neurology 29: 10061013.CrossRefGoogle ScholarPubMed
Koyanagi, T, Obori, H (1965) Effect of pantothenic acid and Vitamin B on the excretion of taurine in the urine of rats. Tohoku J Exp Med 86: 394396.CrossRefGoogle ScholarPubMed
Kraus-Ruppert, R (1964) Erganzendes zur kenntnis der spino-pontocerebellaren atrophien und zur frage des zellstoffwechsels. Arch Psychiat Nervenkr 205: 409432.CrossRefGoogle Scholar
Launay, M, Lapous, D, Raulin, J (1981) Control of replication by dietary lipids and namely by linoleic acid in liver and adipose tissue of developing rats. Prog Lipid Res 20: 331338.CrossRefGoogle ScholarPubMed
Lubozynski, MF, Roelofs, RI (1975) Friedreich’s ataxia: a review of recent literature. South Med J 68: 757763.CrossRefGoogle Scholar
Mahboob, S (1975) Effect of pantothenic acid deficiency on microsomal lipids of rat liver. Nutr Metabol 19: 9195.CrossRefGoogle ScholarPubMed
Mahboob, S, Estes, LW (1978) Effect of pantothenic acid deficiency on rat hepatocytes. Nutr Metabl 22: 177180.CrossRefGoogle ScholarPubMed
Margalith, D, Dunn, HG, Carter, JE, Wright, JM (1984) Friedreich’s ataxia with dysautonomia and labile hypertension. Can J Neurol Sci 11:7377.CrossRefGoogle ScholarPubMed
Marks, JD, Berry, HK (1962) Increase in urine amino acids associated with pantothenic acid deficiency in the rat. in: (Holden, J.T., ed.), Amino Acid Pools, New York, Elsevier Publ Co., pp. 461464.Google Scholar
May, WE (1984) Nutritional sensory neuronopathy — An emerging new syndrome. Arch Neurol 41: 559560.CrossRefGoogle ScholarPubMed
McLeod, JG (1970) Electrophysiological and sural nerve biopsy studies in patients with Friedreich’s ataxia and Charcot-Marie-Tooth disease. Proc Aust Ass Neurol 7: 8995.Google ScholarPubMed
Muller, DPR, Lloyd, JK, Wolff, OH (1983) Vitamin E and neurological function. The Lancet 1: 225228.CrossRefGoogle ScholarPubMed
Nelson, JS, Fitch, CD, Fischer, VW, Broun, GO, Chou, AC (1981). Progressive neuropathologic lesions in Vitamin E-deficient Rhesus monkeys. J Neuropath Exp Neurol 40: 166186.CrossRefGoogle ScholarPubMed
Packman, S, Sweetman, L, Baker, H, Wall, S (1981a) The neonatal form of biotin responsive multiple carboxylase deficiency. J Pediatr 99: 418420.CrossRefGoogle ScholarPubMed
Packman, S, Sweetman, L, Yoshimo, M, Baker, H, Cowan, M (1981b) Biotin responsive multiple carboxylase deficiency of infantile onset. J Pediatr 99: 421423.CrossRefGoogle ScholarPubMed
Perry, TL, Hansen, S, Currier, RD, Berry, K (1978) Abnormalities in neurotransmitter amino acids in dominantly inherited cerebellar disorders. Adv Neurol 21: 303314.Google ScholarPubMed
Plaitakis, A, Berl, S, Nicklas, WJ, Yahr, MD (1980a) Glutamate dehydrogenase deficiency in spinocerebellar degeneration: correlation with adult-onset recessive ataxia. Trans Am Neurol Ass 105: 476477.Google Scholar
Plaitakis, A, Berl, S, Yahr, MD (1981) Amino acids as putative transmitters: the role of aspartate and glutamate in nervous system dysfunction and degeneration. Excerpta Medica ICS 568: 259273.Google Scholar
Plaitakis, A, Berl, S, Yahr, MD (1982) Abnormal glutamate metabolism in adult-onset degenerative neurological disorder. Science 216:193196.CrossRefGoogle ScholarPubMed
Plaitakis, A, Berl, S, Yahr, MD (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15: 144153.CrossRefGoogle ScholarPubMed
Plaitakis, A, Berl, S, Yahr, MD (1983) Evidence for mutation of a glutamate dehydrogenase ‘isoenzyme’ in recessive olivo-ponto-cerebellar atrophy. Ann Neurol 14: 108109.Google Scholar
Plaitakis, A, Nicklas, W, Desnick, RJ (1980b) Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann Neurol 7: 297303.CrossRefGoogle ScholarPubMed
Podolsky, S, Pothier, A, Krall, LP (1964) Association of diabetes mellitus and Friedreich’s ataxia. Arch Int Med 114: 533537.CrossRefGoogle ScholarPubMed
Quick, AJ (1936) Clinical value of test for hippuric acid in cases of diseases of liver. Arch Int Med 57: 544560.CrossRefGoogle Scholar
Reibel, DK, Wyse, BW, Berkich, DA, Neely, JR (1982) Coenzyme A metabolism in pantothenic acid-deficient rats. J Nutr 112: 11441150.CrossRefGoogle ScholarPubMed
Reibel, DK, Wyse, BW, Berkich, DA, Palko, WM, Neely, JR (1981) Effects of diabetes and fasting on pantothenic acid metabolism in rats. Am J Physiol 240 (Endocrinol Metab 3) E: 597601.CrossRefGoogle ScholarPubMed
Refsum, S. (1946). Heredopathia atactica polyneuritiformis: a familial syndrome not hiterto described. A contribution to the clinical study of the hereditary diseases of the nervous system. Acta Psychiat Scand suppl 38: 1303.Google Scholar
Robinson, N (1966a) Friedreich’s ataxia: a histochemical and biochemical study. 1. Enzymes of carbohydrate metabolism. Acta Neuropath (Berl) 6: 2534.CrossRefGoogle ScholarPubMed
Robinson, N (1966b) Friedreich’s ataxia: a histochemical and biochemical study. 11. Hydrolytic enzymes. Acta Neuropath (Berl) 6: 3545.CrossRefGoogle Scholar
Robinson, N (1968) Chemical changes in the spinal cord in Friedreich’s ataxia and motor neurone disease. J Neurol Neurosurg Psychiat 31: 330333.CrossRefGoogle ScholarPubMed
Robinson, N, Curzon, G, Theaker, P (1965b) Excretion of tryptophan metabolites in Friedreich’s ataxia. J Clin Path 18: 797799.CrossRefGoogle ScholarPubMed
Robinson, N, Phillips, BM, Cummings, JN (1965b) Serum enzymes in Friedreich’s ataxia. Brain 88: 131136.CrossRefGoogle ScholarPubMed
Rowland, LP (1983) Molecular genetics, pseudogenetics and clinical neurology (The Robert Wartenberg Lecture). Neurology 33: 11791195.CrossRefGoogle ScholarPubMed
Sander, JE, Malamud, N, Cowan, MJ, Packman, S, Amman, AJ, Wara DW (1980) Intermittent ataxia and immunodeficiency with multiple carboxylase deficiences: a biotin-responsive disorder. Ann Neurol 8: 544547.CrossRefGoogle Scholar
Sander, JE, Packman, S, Townsend, JJ (1982) Brain pyruvate carboxylase and the pathophysiology of biotin-dependent disease. Neurology (NY) 32: 878880.CrossRefGoogle Scholar
Smith, CM, Cano, ML, Potyraj, J (1978) The relationship between metabolic state and total Co A content of rat liver and heart. J Nutr 108: 854862.CrossRefGoogle Scholar
Stannton, HC, Brenner, G, Mayfield, ED (1969) Studies on isoproterenolinduced cardiomegaly in rats. Am Heart J 77: 7280.CrossRefGoogle Scholar
Stumpf, DA (1982) Friedreich’s disease: a metabolic cardiomyopathy. Am Heart J 104: 887888.CrossRefGoogle ScholarPubMed
Stumpf, DA, Parks, JK (1978) Friedreich’s ataxia: I. Normal pyruvate dehydrogenase complex activity in platelets. Ann Neurol 4: 366368.CrossRefGoogle ScholarPubMed
Stumpf, DA, Parks, JK (1979) Friedreich’s ataxia: 11. Normal kinetics of lipoamide dehydrogenase. Neurology 29: 820826.CrossRefGoogle ScholarPubMed
Stumpf, DA, Parks, JK, Eguren, LA, Haas, R (1982) Friedreich’s ataxia: III. Mitochondrial malic enzyme deficiency. Neurology (NY) 32: 221227.CrossRefGoogle ScholarPubMed
Stumpf, DA, Parks, JK, Parker, WD (1983) Friedreich’s ataxia: IV. Reduced mitochondrial malic enzyme activity in heterozygotes. Neurology (Clev) 33: 780783.CrossRefGoogle Scholar
Swank, RL, Adams, RD (1948) Pyridoxine and pantothenic acid deficiency in swine. J Neuropath Exp Neurol 7: 274286.CrossRefGoogle ScholarPubMed
Szanto, J, Gallyas, F (1966) A study of iron metabolism in neuropsychiatric patients. Hallervorden-Spatz disease. Arch Neurol (Chic) 14: 438442.CrossRefGoogle ScholarPubMed
Tarr, JB, Tamurat, T, Stokstad, ELR (1981) Availability of Vitamin Band pantothenate in an average American diet in man. Am J Clin Nutr 34: 13281337.CrossRefGoogle Scholar
Thoene, J, Wolf, B (1983) Biotinidase deficiency in juvenile multiple carboxylase deficiency. The Lancet 2: 398.CrossRefGoogle ScholarPubMed
Thoren, C (1964) Cardiomyopathy in Friedreich’s ataxia with studies of cardiovascular and respiratory function. Acta Paediatr Scand 53, suppl 153: 1100.CrossRefGoogle ScholarPubMed
Thurston, JH, Hauhart, RE, Naccarato, EF (1981) Taurine: possible role in osmotic regulation of mammalian heart. Science 214: 13731374.CrossRefGoogle ScholarPubMed
Tsujikawa, M, Kimura, S (1981) Effect of exposure to cold on pantothenic acid metabolism in rat liver. Tohoku J Exp Med 133: 457460.CrossRefGoogle ScholarPubMed
Tyrer, JH (1975) Friedreich’s ataxia. In: (Vinken, PJ and Bruyn, GW, eds), Handbook of Clinical Neurology, Amsterdam, Elsevier Publ, 21: 319364.Google Scholar
van Gelder, NM (1983) Principles of Compartmentation. In: Lajtha, A (ed), Handbook of Neurochemistry, Plenum Publ Corp, vol 2 (2nd edition), pp 183206.Google Scholar
Walker, JL, Chamberlain, S, Robinson, N (1980) Lipids and lipoproteins in Friedreich’s ataxia. J Neurol Neurosurg Psychiat 43: 111117.CrossRefGoogle ScholarPubMed
Walsh, JH, Wyse, BW, Gaurth Hansen, R (1981) Pantothenic acid content of 75 processed and cooked foods. J American Dietet Assoc 78: 140144.CrossRefGoogle ScholarPubMed
Werlin, SL, Harb, JM, Swick, H, Blank, E (1983) Neuromuscular dysfunction and ultrastructural pathology in children with chronic cholestasis and Vitamin E deficiency. Ann Neurol 13: 291296.CrossRefGoogle ScholarPubMed
Wiklund, L, Toggenburger, G, Cuenod, M (1982) Aspartate: possible neurotransmitter in cerebellar climbing fibers. Science 216: 7880.CrossRefGoogle ScholarPubMed
Wintrobe, MM, Follis, RH, Alcayaga, R, Paulson, N, Humphreys, S (1943) Pantothenic acid deficiency in swine. Bull Johns Hopkins Hospital 73: 313341.Google Scholar
Wintrobe, MM, Miller, HM, Follis, RH, Stein, HJ, Mushatt, C, Humphreys, S (1942) Sensory neuron degeneration in pigs. IV. Protection affored by calcium pantothenate and pyridoxine. J Nutr 24: 345366.CrossRefGoogle Scholar
Yamaguchi, T, Hayashi, K, Mura-Kami, H, Ota, K, Maruyama, S (1982) Glutamate dehydrogenase deficiency in spinocerebellar degeneration. Neurochem Res 7: 627636.CrossRefGoogle Scholar
Yao, JK, Dyck, PJ (1978) Lipid abnormalities in hereditary neuropathy-Part 2: serum phospholipids. J Neurol Sci 36: 225236.CrossRefGoogle ScholarPubMed
Yao, JK, Dyck, PJ (1979) Accumulation of polyunsaturated fatty acids in developing peripheral nerve. Proc Amer Soc Neurochem 12: 214.Google Scholar
Yorek, MA, Strom, DK, Spector, AA (1984) Effect of membranes polyunsaturation on carrier-mediated transport in cultured retinoblastoma cells: alterations in taurine uptake. J Neurochemistry 42:254261.CrossRefGoogle ScholarPubMed