Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T16:07:07.677Z Has data issue: false hasContentIssue false

The Reliability of Ultrasound Measurements of Carotid Stenosis Compared to MRA and DSA

Published online by Cambridge University Press:  02 December 2014

Colin Honish
Affiliation:
Department of Neurosurgery, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada
Venkatraman Sadanand
Affiliation:
Department of Neurosurgery, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada
Derek Fladeland
Affiliation:
Department of Neurosurgery, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada
Vance Chow
Affiliation:
Department of Neurosurgery, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada
Fahrad Pirouzmand*
Affiliation:
Department of Neurosurgery, University of Toronto, Sunnybrook and Women's Health Sciences Center, Toronto, ON, Canada
*
University of Toronto, Sunnybrook and Women’s Health Sciences Center, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Carotid ultrasound (US) is a screening test for patients with transient ischemic attacks (TIAs) or stroke who then undergo Digital Subtraction Angiogram (DSA) or Magnetic Resonance Angiography (MRA). Gold standard DSA is invasive with inherent risks and costs. MRA is an evolving technology. This study compares reliability of MRA and US modes with DSA in determining degree of internal carotid artery stenosis.

Methods:

A five year retrospective analysis of 140 carotid arteries from patients who had carotid US and DSA, and possibly Magnetic Resonance Angiography was undertaken. Recorded US parameters were peak systolic velocity (PSV), end diastolic velocity (EDV), and ICA/CCA peak systolic velocity ratio. The MRA and DSA parameters used NASCET technique for measuring stenosis. Statistical analysis included ROC curves and Kappa computation.

Results:

US grading of carotid stenosis can be made more reliable by choosing appropriate parameters. The best combination of sensitivity and specificity for stenosis > 70% in our hospital was seen at PSV > 173cm/s (sensitivity 0.87, specificity 0.8, Positive Predictive Value (PPV) 0.70, Negative Predictive Value (NPV) 0.93, kappa 0.64 and weighted kappa 0.71). MRA kappa was 0.78, (sensitivity 0.75, specificity 1.0, PPV 1.0, NPV 0.85).

Conclusions:

US parameters should be validated in each centre. At best, US can only approximate the accuracy of DSA, probably due to inherent limitations of this modality. Magnetic Resonance Angiography has a perfect specificity and PPV but this technique needs to be standardized. Simultaneous use of MRA and US for screening increases sensitivity to over 0.9 without compromising specificity in > 70% stenosis.

Résumé:

RÉSUMÉ: Objectif:

L’échographie carotidienne (ÉC) est une épreuve de dépistage chez les patients qui ont subi une ischémie cérébrale transitoire (ICT) ou un accident vasculaire cérébral (AVC) et chez qui on pratique ensuite un angiogramme numérisé (AN) ou un angiogramme par résonance magnétique (ARM). L’étalon or est l’AN qui est un examen effractif avec les risques et les coûts qui y sont associés. L’ARM est une technique en développement. Cette étude compare la fiabilité de l’ARM et de l’ÉC par rapport à l’AN pour déterminer le degré de sténose de la carotide interne (CI).

Méthodes:

Il s’agit d’une étude rétrospective de 140 artères carotides de patients qui ont subi une ÉC et un AN et dont certains ont subi une ARM. Les paramètres enregistrés à l’ÉC étaient la vélocité systolique maximale (VSM), la vélocité en fin de diastole (VFD) et le rapport de la vélocité systolique maximale dans la carotide interne sur celle de la carotide commune (RV). Les critères NASCET ont été utilisés pour mesurer la sténose au moyen des paramètres obtenus par ARM et AN. L’analyse statistique comportait la détermination de la courbe ROC et du coefficient Kappa.

Résultats:

La fiabilité de la détermination du degré de sténose carotidienne par ÉC peut être améliorée par le choix de paramètres appropriés. La meilleure combinaison de sensibilité et de spécificité pour une sténose > 70% dans notre hôpital a été observée à une VSM > 173 cm/s (sensibilité 0,87 ; spécificité 0,8 ; valeur prédictive positive (VPP) 0,70 valeur prédictive négative (VPN) 0,93, Kappa 0,64 et Kappa pondéré 0,71). La valeur Kappa pour l’ARM était de 0,78 (sensibilité 0,75 ; spécificité 1,0 ; VPP 1,0 et VPN 0,85).

Conclusions:

Les paramètres de l’ÉC devraient être validés dans chaque centre. Au mieux, l’ÉC ne peut qu’approcher la précision de l’AN, probablement à cause des limites inhérentes à cette technique. L’ARM a une spécificité et une VPP parfaites, mais cette technique doit être standardisée. L’utilisation simultanée de l’ARM et de l’ÉC pour le dépistage augmente la sensibilité à plus de 0,9 sans compromettre la spécificité pour les sténoses > 70%.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Culebras, A, Kase, CS, Masdeu, JC, et al. AHA Scientific Statement.Practice guidelines for the use of imaging in transient ischemic attacks and acute stroke. A report of the stroke council, American Heart Association. Stroke 1997; 28:14801497.CrossRefGoogle Scholar
2. Dion, JE, Gates, PC, Fox, AJ, et al. Clinical events followingneuroangiography: A prospective study. Stroke 1987; 18:9971004.CrossRefGoogle ScholarPubMed
3. Executive committee for ACASstudy. Endarterectomy forasymptomatic carotid artery stenosis. JAMA 1995; 273:14211428.CrossRefGoogle Scholar
4. Johnston, DCC, Chapman, KM, Goldstein, LB. Low rate ofcomplications of cerebral angiography in routine clinical practice. Neurology 2001; 57:20122014.CrossRefGoogle Scholar
5. Leclerc, X, Pruvo, JP: Recent advances in magnetic resonanceangiography of carotid and vertebral arteries. Curr Opin Neurol 2000; 13:7582.CrossRefGoogle Scholar
6. Riles, TS, Eidelman, EM, Litt, AW, et al. Comparison of magneticresonance angiography, conventional angiography, and duplex scanning. Stroke 1992; 23:341346.CrossRefGoogle Scholar
7. Jackson, MR, Chang, AS, Robles, HA, et al. Determination of 60%or greater carotid stenosis: A prospective comparison of magnetic resonance angiography and duplex ultrasound with conventional angiography. Ann Vasc Surg 1998; 12:236243.CrossRefGoogle ScholarPubMed
8. Johnston, DCC, Eastwood, JD, Nguyen, T, Goldstein, LB. Contrast-enhanced magnetic resonance angiography of carotid arteries. Utility in routine clinical practice. Stroke 2002; 33:28342838.CrossRefGoogle ScholarPubMed
9. Koelemay, MJ, Nederkoorn, PJ, Reitsma, JB, et al. Systematic reviewof computed tomographic angiography for assessment of carotidartery disease. Stroke 2004; 35:23062312.CrossRefGoogle Scholar
10. Carpenter, JP, Lexa, FJ, Davis, JT. Determination of duplex dopplerultrasound criteria appropriate to the North American symptomatic carotid endarterectomy trial. Stroke 1996; 27:695699.CrossRefGoogle Scholar
11. Cutnell, JD, Johnson, KW. Physics, 4th ed. John Wiley & Sons, Inc. 11:324329, 1998.Google Scholar
12. Alexandrov, AV, Vital, D, Brodie, DS, et al. Grading carotid stenosiswith ultrasound: An interlaboratory comparison. Stroke 1997; 28:12081210.CrossRefGoogle Scholar
13. Zwiebel, WJ. New doppler parameters for carotid stenosis. Seminars in ultrasound, CT and MRI 1997; 18:6671.Google Scholar
14. NASCET- North American symptomatic carotid endarterectomytrial. Methods, patient characteristics, and progress. Stroke 1991; 22:711720.CrossRefGoogle Scholar
15. NASCET- North American symptomatic carotid endarterectomytrial collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade stenosis. N Engl J Med 1991; 325:445453.CrossRefGoogle Scholar
16. Moneta, GL, Edwards, J M, Chitwood, RW, et al. Correlation of NorthAmerican symptomatic carotid endarterectomy trial (NASCET) Angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning. J Vasc Surg 1993; 17:152159.CrossRefGoogle Scholar
17. Fox, AJ. How to measure carotid stenosis. Radiology 1993; 186:316318.CrossRefGoogle ScholarPubMed
18. Rothwell, PM, Gibson, R, Warlow, CP, et al. Interrelation betweenplaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. Stroke 2000; 31:615621.CrossRefGoogle Scholar
19. Streifler, JY, Eliasziw, M, Fox, AJ, et al. Angiographic detection ofcarotid plaque ulceration. Comparison with surgical observations in a multicenter study. Stroke 1994; 25:11301132.CrossRefGoogle Scholar
20. ACAS- The Asymptomatic Carotid Atherosclerosis Study Group. Study design for randomized prospective trial of carotid endarterectomy for asymptomatic atherosclerosis. Stroke 1989; 20:844849.CrossRefGoogle Scholar
21. Portney, LG, Watkins, MP. Foundations of clinical researchapplication to practice, 2nd ed. Prentice-Hall Inc. 2000;26:568575.Google Scholar
22. Cohen, J: Weighted Kappa. Nominal scale agreement with provisionfor scaled disagreement or partial credit. Psycholo Bull 1968; 70:213220.CrossRefGoogle ScholarPubMed
23. Buskens, E, Nederkoorn, PJ, Buijs-van der Woude, T, et al. Imaging of carotid arteries in symptomatic patients: Cost-effectiveness of diagnostic strategies. Radiology 2004; 233:101112.CrossRefGoogle ScholarPubMed
24. Koga, M, Kimura, K, Minematsu, K, et al. Diagnosis of internalcarotid artery stenosis greater than 70% with power doppler duplex sonography. AJNR Am J Neuroradiology 2001; 22:413417.Google Scholar
25. Sabeti, S, Schillinger, M, Wolfgang, M, et al. Quantification ofinternal carotid artery stenosis with duplex US: Comparative analysis of different flow velocity criteria. Radiology 2004; 232:431439.CrossRefGoogle Scholar
26. Herzig, R, Burval, S, Krupka, B, et al. Comparison ofultrasonography, CT angiography, and digital subtraction angiography in severe carotid stenoses. Eur J of Neurol 2004; 11:774781.CrossRefGoogle Scholar
27. Randoux, B, Marro, B, Marsault, C. Carotid artery stenosis:Competition between CT angiography and MR angiography. AJNR Am J Neuroradiol 2004; 25:663664.Google ScholarPubMed