Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T17:01:16.602Z Has data issue: false hasContentIssue false

Screening of Key Genes Associated with Ischemic Stroke via Microarray Data

Published online by Cambridge University Press:  23 September 2014

Jianmin Wang*
Affiliation:
Department of Neurology, Baoshan Branch of Huashan Hospital, Fudan University
Dongliang Zhou
Affiliation:
Department of Neurology, Baoshan Branch of Huashan Hospital, Fudan University
Hongwei Qin
Affiliation:
Department of Neurology, Baoshan Branch of Huashan Hospital, Fudan University
Ying Xu
Affiliation:
Department of Neurology, Baoshan Branch of Huashan Hospital, Fudan University
Ying Guan
Affiliation:
Department of Neurology, Baoshan Branch of Huashan Hospital, Fudan University
Weidong Zang
Affiliation:
FengHe (ShangHai) Information Technology Co. Ltd., Shanghai, China
*
No. 1999 Changjiang West Road, Shanghai 200431, China. Email: wangjianmin5588885@hotmail.com.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To promote understandings about the pathogenesis of ischemic stroke (IS) through mining key genes, functions and pathways with microarray technology.

Methods:

Differentially expressed genes (DEGs) in blood between patients with IS and healthy people were screened out through comparing microarray data obtained from Gene Expression Omnibus. Overrepresented functions in DEGs were revealed by Gene Ontology (GO) enrichment analysis. Interaction network was constructed for the top 24 DEGs with information from Human Protein Reference Database (HPRD). Relevant microRNAs (miRNAs) were retrieved from three databases: TargetScan, miRBase and miRanda.

Results:

A total of 503 DEGs were obtained. Functional enrichment analysis showed that immune response, signaling pathways and apoptosis were significantly over-represented. Six key genes with big degree, betweenness and clustering coefficient were then revealed, which might play important roles in the development of IS. In addition, 57 differentially expressed miRNAs targeting the 6 genes were retrieved.

Conclusions:

Our study provides insights into the pathogenesis of IS and potential targets to treat the disease.

Résumé

RÉSUMÉ Objectif:

Le but de l'étude était de favoriser la compréhension de la pathogenèse de l'accident vasculaire cérébral ischémique (AVCI) en explorant des gènes, des fonctions et des voies de signalisation clés au moyen de la technique des biopuces.

Méthode:

Des gènes différentiellement exprimés (GDE) dans le sang de patients atteints d'un AVCI et de sujets sains ont été étudiés en comparant les données acquises par la technique des micropuces obtenues de Gene Expression Omnibus. Les fonctions surreprésentées dans les GDE ont été identifiées par le test d'enrichissement basé sur le Gene Ontology. Un réseau d'interactions a été construit pour les 24 premiers GDE au moyen d'informations obtenues de la Human Protein Reference Database. Les micro-ARN pertinents ont été obtenus de trois bases de données : TargetScan, miRBase et miRanda.

Résultats:

Nous avons obtenu 503 GDE en tout. L'analyse d'enrichissement fonctionnel a montré que la réponse immunitaire, les voies de signalisation et l'apoptose étaient surrepésentées de façon significative. Six gènes clés ayant un coefficient élevé d'intermédiarité et de clustering ont ensuite été identifiés. Ils pourraient jouer des rôles importants dans la genèse de l'AVCI. De plus, nous avons identifié 57 micro-ARN différentiellement exprimés ciblant les 6 gènes.

Conclusions:

Notre étude fournit des informations sur la pathogenèse de l'AVCI et des cibles potentielles de traitement de la maladie.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Donnan, GA, Fisher, M, Macleod, M, Davis, SM. Stroke. Lancet. 2008;371(9624):161223.Google Scholar
2. Tang, Y, Xu, H, Du, X, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006;26(8):1089102.CrossRefGoogle ScholarPubMed
3. Pan, S, Zhan, X, Su, X, Guo, L, Lv, L, Su, B. Proteomic analysis of serum proteins in acute ischemic stroke patients treated with acupuncture. Exp Biol Med (Maywood). 2011;236(3):32533.Google Scholar
4. Minagar, A, Alexander, JS, Kelley, RE, Harper, M, Jennings, MH. Proteomic analysis of human cerebral endothelial cells activated by glutamate/MK-801: significance in ischemic stroke injury. J Mol Neurosci. 2009;38(2):18292.CrossRefGoogle ScholarPubMed
5. Jin, R, Yang, G, Li, G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):77989.CrossRefGoogle ScholarPubMed
6. Tuttolomondo, A, Di Raimondo, D, di Sciacca, R, Pinto, A, Licata, G. Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des. 2008;14(33):357489.Google Scholar
7. Basic Kes, V, Simundic, AM, Nikolac, N, Topic, E, Demarin, V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem. 2008;41(16–17):13304.CrossRefGoogle ScholarPubMed
8. Waje-Andreassen, U, Krakenes, J, Ulvestad, E, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Nerol Scand. 2005;111(6):3605.Google Scholar
9. Rogaev, EI. Small RNAs in human brain development and disorders. Biochemistry (Mosc). 2005;70(12):14047.Google Scholar
10. Tie, J, Fan, D. Big roles of microRNAs in tumorigenesis and tumor development. Histol Histopathol. 2011;26(10):135361.Google ScholarPubMed
11. Skaftnesmo, KO, Prestegarden, L, Micklem, DR, Lorens, JB. MicroRNAs in tumorigenesis. Curr Pharm Biotechnol. 2007;8(6):3205.Google Scholar
12. Tan, KS, Armugam, A, Sepramaniam, S, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4(11):e7689.CrossRefGoogle ScholarPubMed
13. Barrett, T, Edgar, R. Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 2006;411:35269.Google Scholar
14. Davis, S, Meltzer, PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):18467.Google Scholar
15. Edgar, R, Domrachev, M, Lash, AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):20710.Google Scholar
16. Barrett, T, Suzek, TO, Troup, DB, et al. NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res. 2005;33(Database issue):D5626.Google Scholar
17. Krug, T, Manso, H, Gouveia, L, et al. Kalirin: a novel genetic risk factor for ischemic stroke. Hum Genet, 2010;127(5):51323.CrossRefGoogle ScholarPubMed
18. Montaner, J, Fernandez-Cadenas, I, Molina, CA, et al. Poststroke C-reactive protein is a powerful prognostic tool among candidates for thrombolysis. Stroke. 2006;37(5):120510.Google Scholar
19. Domingues-Montanari, S, Fernandez-Cadenas, I, del Rio-Espinola, A, et al. The I/D polymorphism of the ACE1 gene is not associated with ischaemic stroke in Spanish individuals. Eur J Neurol. 2010;17(11):13902.Google Scholar
20. Adams, HP Jr, Bendixen, BH, Kappelle, LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):3541.Google Scholar
21. Krug, T, Gabriel, JP, Taipa, R, et al. TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches. J Cereb Blood Flow Metab. 2012;32 (6):106172.CrossRefGoogle ScholarPubMed
22. Storey, JD. A direct approach to false discovery rates. J R Stat Soc: Series B (Statistical Methodology). 2002;64(3):47998.Google Scholar
23. Ashburner, M, Ball, CA, Blake, JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):259.Google Scholar
24. Lewis, BP, Burge, CB, Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):1520.Google Scholar
25. Griffiths-Jones, S, Grocock, RJ, van Dongen, S, Bateman, A, Enright, AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34 (Database issue): D1404.Google Scholar
26. Betel, D, Wilson, M, Gabow, A, Marks, DS, Sander, C. The microRNA org resource: targets and expression. Nucleic Acids Res. 2008;36 (Database issue):D14953.Google Scholar
27. Muir, KW, Tyrrell, P, Sattar, N, Warburton, E. Inflammation and ischaemic stroke. Curr Opin Neurol. 2007;20(3):33442.Google Scholar
28. Offner, H, Subramanian, S, Parker, SM, Afentoulis, ME, Vandenbark, AA, Hurn, PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):65465.Google Scholar
29. Streit, WJ, Conde, JR, Fendrick, SE, Flanary, BE, Mariani, CL. Role of microglia in the central nervous system's immune response. Neurol Res. 2005;27(7):68591.Google Scholar
30. Hanisch, UK. Microglia as a source and target of cytokines. Glia. 2002;40(2):14055.Google Scholar
31. Kochanek, PM, Hallenbeck, JM. Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke. 1992;23(9):136779.Google Scholar
32. Yilmaz, G, Arumugam, TV, Stokes, KY, Granger, DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):210512.Google Scholar
33. Liu, H, Xin, L, Chan, BP, Teoh, R, Tang, BL, Tan, YH. Interferon-beta administration confers a beneficial outcome in a rabbit model of thromboembolic cerebral ischemia. Neurosci Lett. 2002;327(2):1468.Google Scholar
34. Paschen, W, Gissel, C, Althausen, S, Doutheil, J. Changes in interferon-regulatory factor-1 mRNA levels after transient ischemia in rat brain. Neuroreport. 1998;9(14):314751.CrossRefGoogle ScholarPubMed
35. Tanaka, N, Kawakami, T, Taniguchi, T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Biol. 1993;13(8):45318.Google Scholar
36. Horiuchi, M, Yamada, T, Hayashida, W, Dzau, VJ. Interferon regulatory factor-1 up-regulates angiotensin II type 2 receptor and induces apoptosis. J Biol Chem. 1997;272(18):119528.Google Scholar
37. Peter, ME, Heufelder, AE, Hengartner, MO. Advances in apoptosis research. Proc Natl Acad Sci U S A. 1997;94(24):127367.CrossRefGoogle ScholarPubMed
38. Yue, X, Mehmet, H, Penrice, J, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxiaischaemia. Neuropathol Appl Neurobiol. 1997;23(1):1625.Google Scholar
39. Xia, CF, Yin, H, Borlongan, CV, Chao, L, Chao, J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004;43(2):4529.CrossRefGoogle ScholarPubMed
40. Xia, CF, Yin, H, Yao, YY, Borlongan, CV, Chao, L, Chao, J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17(2):20619.Google Scholar
41. Zaremba, J, Losy, J. Early TNF-alpha levels correlate with ischaemic stroke severity. Acta Neurol Scand. 2001;104(5):28895.Google Scholar
42. Liu, T, Clark, RK, McDonnell, PC, et al. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke. 1994;25(7):14818.Google Scholar
43. Belosjorow, S, Bolle, I, Duschin, A, Heusch, G, Schulz, R. TNF-alpha antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. Am J Physiol Heart Circ Physiol. 2003;284(3):H92730.Google Scholar
44. Yan, J, Greer, JM, Etherington, K, et al. Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol. 2009;206(1–2):1127.CrossRefGoogle ScholarPubMed
45. Wei, YS, Lan, Y, Liu, YG, Meng, LQ, Xu, QQ, Xie, HY. [Association of the integrin gene polymorphisms with ischemic stroke and plasma lipid levels]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2009;26(2):2115.Google Scholar
46. Wang, CL. Caldesmon and the regulation of cytoskeletal functions. Adv Exp Med Biol. 2008; 644:25072.Google Scholar
47. Suzuki, H, Hasegawa, Y, Kanamaru, K, Zhang, JH. Mitogen-activated protein kinases in cerebral vasospasm after subarachnoid hemorrhage: a review. Acta Neurochir Suppl. 2011;110(Pt 1):1339.Google Scholar
48. Jiang, Q, Huang, R, Cai, S, Wang, CL. Caldesmon regulates the motility of vascular smooth muscle cells by modulating the actin cytoskeleton stability. J Biomed Sci. 2010;17(6):6.Google Scholar
49. Wang, Y, Yang, GY. MicroRNAs in cerebral ischemia. Stroke Res Treat. 2013;2013:276540.Google Scholar
50. Ouyang, YB, Lu, Y, Yue, S, et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis. 2012;45(1):55563.Google Scholar
51. Kaur, P, Armugam, A, Jeyaseelan, K. MicroRNAs in Neurotoxicity. J Toxicol. 2012;2012:870150.Google Scholar
52. Ouyang, YB, Stary, CM, Yang, GY, Giffard, R. microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets. 2013;14(1):90101.Google Scholar