Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T14:25:20.619Z Has data issue: false hasContentIssue false

Geochemical Risk Factors for Mental Functioning, Based on the Ontario Longitudinal Study of Aging (LSA) III. The Effects of Different Aluminum-containing Compounds

Published online by Cambridge University Press:  29 November 2010

W. F. Forbes
Affiliation:
University of Waterloo*
N. Agwani
Affiliation:
University of Waterloo*

Abstract

Previous work on the association between total aluminum (Al) concentrations and a measure of cognitive impairment is extended by considering the associations between this measure of cognitive impairment, not only with total Al, but also with turbidity and DOC both of which also contain Al. The multivariate, but not bivariate, analyses show that the odds of showing indications of mental impairment increase with turbidity but decrease with DOC, and this effect is most pronounced at a medium pH. It is suggested that the two variables considered could account for some of the unexplained features of the association between Al concentrations and measures of cognitive impairment. The other associations, namely those with F, pH, source of drinking water (ground or surface) remain similar to those reported previously in this series of papers.

Résumé

On pousse plus loin les travaux antérieurs sur l'association entre les concentrations totales d'aluminium (Al) et une mesure de la déficience cognitive en tentant de relier cette mesure non seulement aux concentrations totales d'aluminium mais aussi à la turbidité et au carbone organique dissous, deux facteurs qui contribuent vraisemblablement de manière appréciable à la concentration d'aluminium. L'analyse multifactorielle, mais non l'analyse à deux variables, donne à entendre que la déficience cognitive augmente avec la turbidité et diminue avec la concentration de carbone organique dissous, et que cet effet est le plus marqué lorsque le pH est moyen. Les résultats obtenus pour les autres associations, notamment avec le fluor, le pH et la source d'eau potable (souterraine ou superficielle), sont comparables à ceux qui ont été signalés antérieurement.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birchall, J.D. (1990). The Biological Role of Silicon. Paper presented at the 200th American Chemical Society (ACS) National Meeting, Washington D.C., August 2630.Google Scholar
Birchall, J.D. (1991). The role of silicon in aluminium toxicity. In Alzheimer's Disease and the Environment. Proceedings of an extended panel discussion held in London on 13–14 June 1991 pp. 7077. Oxford: Alden Press.Google Scholar
Birchall, J.D. (1992). The interrelationship between silicon and aluminium in the biological effects of aluminium. In: Aluminium in biology and medicine. Wiley, Chichester (Ciba Foundation Symposium 169), pp. 5068.Google Scholar
Driscoll, C.T., & Schecher, W.D. (1990). The chemistry of aluminum in the environment. Environmental Geochemistry and Health, 12(1/2), 28–49.CrossRefGoogle ScholarPubMed
Flaten, T.P. (1990). Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer's disease), Parkinson's disease and amyotrophic lateral sclerosis in Norway. Environmental Geochemistry and Health, 12(1/2), 152167.CrossRefGoogle ScholarPubMed
Forbes, W.F., Hayward, L.M., & Agwani, N. (1992). Geochemical Risk Factors for Mental Functioning, Based on the Ontario Longitudinal Study of Aging (LSA). I. Results from a Preliminary Investigation. Canadian Journal on Aging, 11(3), 269280.CrossRefGoogle Scholar
Forbes, W.F., & McAiney, C.A. (1992). Aluminium and dementia. The Lancet, 340, 668669.CrossRefGoogle ScholarPubMed
Forbes, W.F., McAiney, C.A., Hayward, L.M., & Agwani, N. (1994). Geochemical Risk Factors for Mental Functioning Based on the Longitudinal Study of Aging (LSA). II. The Role of pH. Canadian Journal on Aging, 13(2), 249267.CrossRefGoogle Scholar
Forbes, W.F., McPherson, B.D., & Shadbolt-Forbes, M.A. (1989). The Validation of Longitudinal Studies: The Case of the Ontario Longitudinal Study of Aging (LSA). Canadian Journal on Aging, 8(1), 5167.CrossRefGoogle Scholar
Lachmaniuk, P. (1992). Ontario's Drinking Water Surveillance Program. Symposium at the Canadian Association on Gerontology, 21st Annual Meeting, Edmonton, Alberta, October 22–25, 1992, Abstract No. 11.Google Scholar
Martyn, C.N., Barker, D.J.P., Osmond, C., Harris, E.C., Edwardson, J.A., & Lacey, R.F. (1989). Geographical relation between Alzheimer's disease and aluminium in drinking water. The Lancet, 1, 5962.CrossRefGoogle ScholarPubMed
Neri, L.C., & Hewitt, D. (1991). Aluminium, Alzheimer's disease, and drinking water. The Lancet, 338, 390.CrossRefGoogle ScholarPubMed
Neri, L.C., Hewitt, D., & Rifat, S.L. (1992). Aluminium concentrations in drinking water and population risk for diagnoses of Alzheimer's disease. Paper presented at the Third International Conference on Alzheimer's Disease and Related Disorders, Padova, Italy, July.Google Scholar
Wettstein, A., Aeppli, J., Gautschi, K., & Peters, M. (1991). Failure to find a relationship between mnestic skills of octogenarians and aluminum in drinking water. Int Arch Occup Environ Health, 63, 97103.CrossRefGoogle ScholarPubMed
Wood, D.J., Cooper, C., Stevens, J., & Edwardson, J. (1988). Bone mass and dementia in hip fracture patients from areas with different aluminium concentrations in water supplies. Age Ageing, 17, 415419.CrossRefGoogle ScholarPubMed