Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T21:11:42.078Z Has data issue: false hasContentIssue false

Noise Affects Performance on the Montreal Cognitive Assessment

Published online by Cambridge University Press:  27 June 2016

Kate Dupuis*
Affiliation:
Department of Psychology, University of Toronto Baycrest Health Sciences, Toronto Toronto Rehabilitation Institute
Veronica Marchuk
Affiliation:
Department of Psychology, University of Toronto
M. Kathleen Pichora-Fuller
Affiliation:
Department of Psychology, University of Toronto Toronto Rehabilitation Institute Rotman Research Institute, Toronto
*
La correspondance et les demandes de tire-à-part doivent être adressées à: / Correspondence and requests for offprints should be sent to: Kate Dupuis, Ph.D., C.Psych. Department of Audiology Baycrest Health Sciences 3560 Bathurst Toronto, ON M6A 2E1 (kdupuis@baycrest.org)

Abstract

We investigated the effect of background noise on performance on the Montreal Cognitive Assessment (MoCA). Two groups of older adults (one with clinically normal hearing, one with hearing loss) and a younger adult group with clinically normal hearing were administered two versions of the MoCA under headphones in low and high levels of background noise. Intensity levels used to present the test were customized based on the hearing abilities of participants with hearing loss to yield a uniform level of difficulty across listeners in the high-level noise condition. Both older groups had poorer MoCA scores in noise than the younger group. Importantly, all participants had poorer MoCA scores in the high-noise (M = 22.7/30) compared to the low-noise condition (M = 25.7/30, p < .001). Results suggest that background noise in the test environment should be considered when cognitive tests are conducted and results interpreted, especially when testing older adults.

Résumé

L’objectif était d’investiguer l’impact de la présence d’un bruit de fond sur la performance au Montreal Cognitive Assessment (MoCA). Deux versions du MoCA ont été administrées, utilisant écouteurs, avec des niveaux bas et élevés de bruit de fond à deux groupes de personnes âgées (un groupe présentant une audition cliniquement normale, le second présentant une perte d’audition) ainsi qu’à un groupe de jeunes adultes. Les niveaux d’intensité utilisés pour présenter la parole et le bruit étaient personnalisés en fonction des habiletés des participants présentant une perte de l’ouïe, et ce en vue de créer un niveau de difficulté uniforme à travers les participants dans la condition de bruit plus élevé. Les deux groupes de personnes âgées ont obtenu des scores plus faibles au MoCA en comparaison aux jeunes adultes. Il est également important de souligner que tous les participants ont obtenu des scores plus faibles au MoCA lorsque le test était administré dans un contexte de bruit élevé (M = 22,7/30), en comparaison à un contexte de bruit faible (M = 25,7/30, p < .001). Ces résultats suggèrent que le bruit de fond présent dans un contexte d’évaluation devrait être pris en considération au moment de l’administration de tests cognitifs ainsi que dans l’interprétation des résultats, en particulier lors de l’essai des adultes plus âgés.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acoustical Society of America. (2010). ANSI/ASA S12.60-2010/Part 1 Acoustical performance criteria, design requirements, and guidelines for schools, Part 1: Permanent schools.Google Scholar
American National Standards Institute. (2004a). Methods for manual pure-tone threshold audiometry (ANSI S3.21–2004). New York, NY: Author.Google Scholar
American National Standards Institute. (2004b). Specifications for audiometers (ANSI S3.6–2004). New York, NY: Author.Google Scholar
Baldwin, C. L., & Ash, I. K. (2011). Impact of sensory acuity on auditory working memory span in young and older adults. Psychology and Aging, 26, 8591.CrossRefGoogle ScholarPubMed
Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. The Lancet, 383(9925), 13251332.CrossRefGoogle ScholarPubMed
Bayo, M. V., García, A. M., & García, A. (1995). Noise levels in an urban hospital and workers’ subjective responses. Archives of Environmental Health: An International Journal, 50(3), 247251.CrossRefGoogle Scholar
Bilger, R. C., Nuetzel, J. M., Rabinowitz, W. M., & Rzeczkowski, C. (1984). Standardization of a test of speech perception in noise. Journal of Speech, Language, and Hearing Research, 27, 3248.CrossRefGoogle ScholarPubMed
Busch-Vishniac, I. J., West, J. E., Barnhill, C., Hunter, T., Orellana, D., & Chivukula, R. (2005). Noise levels in Johns Hopkins hospital. The Journal of the Acoustical Society of America, 118, 36293645.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. (2013). The state of aging and health in America. Atlanta, GA: Author.Google Scholar
Costa, A. S., Fimm, B., Friesen, P., Soundjock, H., Rosschy, C., Gross, T., … & Reetz, K. (2012). Alternate-form reliability of the Montreal Cognitive Assessment screening test in a clinical setting. Dementia and Geriatric Cognitive Disorders, 33, 379384.CrossRefGoogle ScholarPubMed
Cruikshanks, K. J., Zhan, W., & Zhong, W. (2010). Epidemiology of age-related hearing impairment. In Gordon-Salant, S., Frisina, R. D., Popper, A., & Fay, D. (Eds.), The aging auditory system: Perceptual characterization and neural bases of presbycusis (pp. 259274). Berlin, GER: Springer.CrossRefGoogle Scholar
Davey, R. J., & Jamieson, S. (2004). The validity of using the mini mental state examination in NICE dementia guidelines. Journal of Neurology, Neurosurgery and Psychiatry, 75, 341345.Google ScholarPubMed
Davis, A., Smith, P., Ferguson, M., Stephens, D., & Gianopoulos, I. (2007). Acceptability, benefit and costs of early screening for hearing disability: A study of potential screening tests and models. Health Technology Assessment, 11, 1294.CrossRefGoogle ScholarPubMed
Dupuis, K., Pichora-Fuller, M. K., Chasteen, A. L., Marchuk, V., Singh, G., & Smith, S. L. (2015). Effects of hearing and vision impairments on performance on the Montreal Cognitive Assessment. Aging, Neuropsychology, and Cognition, 17, 125.Google Scholar
Evans, G., & Hygge, S. (2007). Noise and performance in adults and children. In Luxon, L. & Prasher, D. (Eds.), Noise and its effects (pp. 549566). London, ENG: Whurr.Google Scholar
Falk, S. A., & Woods, N. F. (1973). Hospital noise: Levels and potential health hazards. The New England Journal of Medicine, 289(15), 774781.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
German-González, M., & Santillán, A. O. (2007). Noise conditions inside waiting rooms of primary care clinics. Revista médica del Instituto Mexicano del Seguro Social, 45, 269275.Google ScholarPubMed
Grumet, G. W. (1993). Pandemonium in the modern hospital. The New England Journal of Medicine, 328(6), 433437.CrossRefGoogle ScholarPubMed
Gurgel, R. K., Ward, P. D., Schwartz, S., Norton, M. C., Foster, N. L., & Tschanz, J. T. (2014). Relationship of hearing loss and dementia: A prospective, population-based study. Otology & Neurotology, 35, 775781.CrossRefGoogle ScholarPubMed
Harvey, P. D., Ferris, S. H., Cummings, J. L., Wesnes, K. A., Hsu, C., Lane, R. M., & Tekin, S. (2010). Evaluation of dementia rating scales in Parkinson’s disease dementia. American Journal of Alzheimer’s Disease and Other Dementias, 25, 142148.CrossRefGoogle ScholarPubMed
Hemp, W. E., Glowatz, M., & Lichtenwalner, C. P. (1995). Curing the noisy office. Occupational Hazards, 57, 36–36.Google Scholar
Humes, L. (2007). The contributions of audibility and cognitive factors to the benefit provided by amplified speech to older adults. Journal of the American Academy of Audiology, 18, 590603.Google Scholar
Humes, L., & Dubno, J. (2010). Factors affecting speech understanding in older adults. In Gordon-Salant, S., Frisina, R. D., Popper, A. N., & Fay, R. R. (Eds.). The aging auditory system (pp. 211257). New York, NY: Springer.CrossRefGoogle Scholar
International Organization for Standardization (ISO). (2000). Acoustics: Statistical distribution of hearing thresholds as a function of age, ISO 7029 . Geneva, SWI: Author.Google Scholar
Jorgensen, L., Palmer, C., & Fischer, G. (2014). Evaluation of hearing status at the time of dementia diagnosis. Audiology Today, 26, 3845.Google Scholar
Jorgensen, L. E., Palmer, C. V., Pratt, S., Erickson, K. I., & Moncrieff, D. (2016). The effect of decreased audibility on MMSE performance: A measure commonly used for diagnosing dementia. Journal of the American Academy of Audiology, 27, 311323.Google ScholarPubMed
Konkani, A., & Oakley, B. (2012). Noise in hospital intensive care units—A critical review of a critical topic. Journal of Critical Care, 27, 522.e1–522.e9.CrossRefGoogle ScholarPubMed
Lin, F. R., Ferrucci, L., Metter, E. J., An, Y., Zonderman, A. B., & Resnick, S. M. (2011a). Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. Neuropsychology, 25, 763770.CrossRefGoogle ScholarPubMed
Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011b). Hearing loss and incident dementia. Archives of Neurology, 68, 214220.CrossRefGoogle ScholarPubMed
Mazer, S. E. (2012). Creating a culture of safety: Reducing hospital noise. Biomedical Instrumentation & Technology, 46(5), 350355.CrossRefGoogle ScholarPubMed
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr, Kawas, C. H., … & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 263269.CrossRefGoogle ScholarPubMed
Murphy, D. R., Daneman, M., & Schneider, B. A. (2006). Why do older adults have difficulty following conversations? Psychology and Aging, 21, 4961.CrossRefGoogle ScholarPubMed
Muzet, A. (2007). Environmental noise, sleep and health. Sleep Medicine Review, 11, 135142.CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695699.CrossRefGoogle Scholar
Park, M., Kohlrausch, A., de Bruijn, W., de Jager, P., & Simons, K. (2014). Analysis of the soundscape in an intensive care unit based on the annotation of an audio recording. The Journal of the Acoustical Society of America, 135, 18751886.CrossRefGoogle Scholar
Pendlebury, S. T., Welch, S. J. V., Cuthbertson, F. C., Mariz, J., Mehta, Z., & Rothwell, P. M. (2013). Telephone assessment of cognition after transient ischemic attack and stroke. Stroke, 44, 227229.CrossRefGoogle ScholarPubMed
Pichora-Fuller, M. K., Dupuis, K., Reed, M., & Lemke, U. (2013). Helping older people with cognitive decline communicate: Hearing aids as part of a broader rehabilitation approach. Seminars in Hearing, 34, 308330.Google Scholar
Pope, D. S., Gallun, F. J., & Kampel, S. (2013). Effect of hospital noise on patients’ ability to hear, understand, and recall speech. Research in Nursing & Health, 36, 228241.CrossRefGoogle ScholarPubMed
Schneider, B. A., Pichora-Fuller, M. K., & Daneman, M. (2010). The effects of senescent changes in audition and cognition on spoken language comprehension. In Gordon-Salant, S., Frisina, R. D., Popper, A., & Fay, D. (Eds.), The aging auditory system: Perceptual characterization and neural bases of presbycusis (pp. 167210). Berlin, GER: Springer.CrossRefGoogle Scholar
Smith, S. L., Bennett, L. W., & Wilson, R. H. (2008). Prevalence and characteristics of dual sensory impairment (hearing and vision) in a veteran population. Journal of Rehabilitation Research & Development, 45, 597610.CrossRefGoogle Scholar
Smith, M. M., Tremont, G., & Ott, B. R. (2009). A review of telephone-administered screening tests for dementia diagnosis. American Journal of Alzheimer’s Disease and Other Dementias, 24, 5869.CrossRefGoogle ScholarPubMed
Soutar, R. L., & Wilson, J. A. (1986). Does hospital noise disturb patients? British Medical Journal (Clinical Research ed.), 292(6516), 305.CrossRefGoogle ScholarPubMed
Toner, C. K., Reese, B. E., Neargarder, S., Riedel, T. M., Gilmore, G. C., & Cronin-Golomb, A. (2012). Vision-fair neuropsychological assessment in normal aging, Parkinson’s disease and Alzheimer’s disease. Psychology and Aging, 27, 785790.CrossRefGoogle ScholarPubMed
Wilson, R. H., Abrams, H. B., & Pillion, A. L. (2003). A word-recognition task in multitalker babble using a descending presentation mode from 24 dB to 0 dB signal to babble. Journal of Rehabilitation Research and Development, 40, 321328.CrossRefGoogle Scholar
Wilson, R. H., & Burks, C. A. (2005). The use of 35 words to evaluate hearing loss in terms of signal-to-babble ratio: A clinic protocol. Journal of Rehabilitation Research and Development, 42, 839852.CrossRefGoogle Scholar
Wittich, W., Phillips, N., Nasreddine, Z. S., & Chertkow, H. (2010). Sensitivity and specificity of the Montreal Cognitive Assessment modified for individuals who are visually impaired. Journal of Visual Impairment and Blindness, 104, 360368.CrossRefGoogle Scholar
Yueh, B., Shapiro, N., MacLean, C. H., & Shekelle, P. G. (2003). Screening and management of adult hearing loss in primary care. Journal of the American Medical Association, 289(15), 19761985.CrossRefGoogle ScholarPubMed