Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T21:32:52.319Z Has data issue: false hasContentIssue false

Approximation On Arcs and Dendrites Going to Infinity in ℂn

Published online by Cambridge University Press:  20 November 2018

P. M. Gauthier
Affiliation:
Département de mathématiques et de statistique et Centre de rechèrches mathématiques, Université de Montréal, CP 6128 Centre Ville, Montréal, Québec, H3C 3J7, email: gauthier@dms.umontreal.ca
E. S. Zeron
Affiliation:
Departamento de Matemáticas, Cinvestav I.P.N., Apartado Postal 14-740, México D.F. 07000, México, email: eszeron@math.cinvestav.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On a locally rectifiable arc going to infinity, each continuous function can be approximated by entire functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2002

References

[1] Aupetit, B., L’approximation entière sur les arcs allant à l’infini dans Cn. Complex approximation, Proc. Conf., Québec, 1978, Progr. Math. 4, Birkhäuser, Boston-Basel, 1980, 93102.Google Scholar
[2] Alexander, H., A Carleman theoremfor curves in Cn . Math. Scand. 45(1979), no. 1, 7076.Google Scholar
[3] Alexander, H., Polynomial approximation and hulls in sets of finite linear measure in Cn . Amer. J.Math. 93 (1971), 6574.Google Scholar
[4] Carleman, T., Sur un théorème de Weirstrass. Ark.Mat. 20 (1927), 15.Google Scholar
[5] Chacrone, S., Gauthier, P. M. and Nersessian, A., Carleman approximation on products of Riemann surfaces. Complex Variables Theory Appl. 37 (1998), 97111.Google Scholar
[6] Gamelin, T. W., Uniform algebras. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.Google Scholar
[7] Hocking, J. G. and Young, G. S., Topology. Dover Publications, New York, 1988.Google Scholar
[8] Kuratowski, K., Topology Vol. II. Academic Press, New York and London, 1968.Google Scholar
[9] Scheinberg, S., Uniform approximation by entire functions. J. AnalyseMath. 29 (1976), 1618.Google Scholar
[10] Stolzenberg, G., Polynomially and rationally convex sets. Acta Math. 109 (1963), 259289.Google Scholar
[11] Stolzenberg, G., Uniform approximation on smooth curves. Acta Math. 115 (1966), 185198.Google Scholar
[12] Stout, E. L., The theory of uniform algebras. Bogden & Quigley, Tarrytown-on-Hudson, New York, 1971.Google Scholar