Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T12:39:36.407Z Has data issue: false hasContentIssue false

A Characterization of Prüfer Domains

Published online by Cambridge University Press:  20 November 2018

H. H. Storrer*
Affiliation:
McGill University
*
Present address: Cornell University, Ithaca
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this note is to give a new characterization of Prüfer domains using the concept of ring epimorphism, and to indicate some connections with well-known properties of Prüfer domains. All rings are commutative and have a unit element.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

Footnotes

*

NRC Postdoctoral Fellow

References

1. Bourbaki, N., Algèbre commutative, Chapitres 1 et 2. (Act. Sci. Ind. 1290, Hermann, Paris, 1961).Google Scholar
2. Cartan, H., and Eilenberg, S., Homological algebra. (Princeton University Press, 1956).Google Scholar
3. Davis, E. D., Overrings of commutative rings II. Integrally closed overrings. Trans. Amer. Math. Soc. 110 (1964) 196212.Google Scholar
4. Lazard, D., Epimorphismes plats d′anneaux. C.R. Acad. Sci. Paris 266 (1968) 314317.Google Scholar
5. Lazard, D., Epimorphismes plats. Séminaire P. Samuel (Algèbre commutative) 1967/68, Exposé No. 4. (Secrétariat mathématique, Paris 1968).Google Scholar
6. MacLane, S. and Schilling, O.F.G., Infinite number fields with Noether ideal theories. Amer. J. Math. 61 (1939) 771782.Google Scholar
7. Richman, F., Generalized quotient rings. Proc. Amer. Math. Soc. 19 (1965) 794799.Google Scholar
8. Storrer, H. H., Epimorphismen von kommutativen Ringen. Comm. Math. Helv. 43 (1968) 378401.Google Scholar