Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Folkman, J. H.
and
Graham, R. L.
1969.
A Packing Inequality for Compact Convex Subsets of the Plane.
Canadian Mathematical Bulletin,
Vol. 12,
Issue. 6,
p.
745.
Melissen, Hans (J. B. M.)
1993.
Densest Packings of Congruent Circles in an Equilateral Triangle.
The American Mathematical Monthly,
Vol. 100,
Issue. 10,
p.
916.
GRITZMANN, Peter
and
WILLS, Jörg M.
1993.
Handbook of Convex Geometry.
p.
861.
Melissen, Hans
1994.
Densest packings of eleven congruent circles in a circle.
Geometriae Dedicata,
Vol. 50,
Issue. 1,
p.
15.
Melissen, J. B. M.
1994.
Optimal packings of eleven equal circles in an equilateral triangle.
Acta Mathematica Hungarica,
Vol. 65,
Issue. 4,
p.
389.
Lubachevsky, B. D.
and
Graham, R. L.
1995.
Computing and Combinatorics.
Vol. 959,
Issue. ,
p.
303.
Melissen, J.B.M.
and
Schuur, P.C.
1995.
Packing 16, 17 or 18 circles in an equilateral triangle.
Discrete Mathematics,
Vol. 145,
Issue. 1-3,
p.
333.
Payan, Charles
1997.
Empilement de cercles égaux dans un triangle équilatéral a propos d'une conjecture d'Erdős-Oler.
Discrete Mathematics,
Vol. 165-166,
Issue. ,
p.
555.
Melisseny, J. B. M.
1998.
How different can colours be? Maximum separation of points on a spherical octant.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
Vol. 454,
Issue. 1973,
p.
1499.
Szabó, P. G.
Csendes, T.
Casado, L. G.
and
García, I.
2001.
Optimization Theory.
Vol. 59,
Issue. ,
p.
191.
Lubachevsky, Boris D.
and
Graham, Ronald
2003.
Discrete and Computational Geometry.
Vol. 25,
Issue. ,
p.
633.
Szabó, Péter Gábor
Markót, Mihály Csaba
and
Csendes, Tibor
2005.
Essays and Surveys in Global Optimization.
p.
233.
van Dam, Edwin R.
Husslage, Bart
den Hertog, Dick
and
Melissen, Hans
2007.
Maximin Latin Hypercube Designs in Two Dimensions.
Operations Research,
Vol. 55,
Issue. 1,
p.
158.
van Dam, Edwin
Rennen, Gijs
and
Husslage, Bart
2007.
Bounds for Maximin Latin Hypercube Designs.
SSRN Electronic Journal,
Lubachevsky, Boris D.
and
Graham, Ronald L.
2009.
Minimum perimeter rectangles that enclose congruent non-overlapping circles.
Discrete Mathematics,
Vol. 309,
Issue. 8,
p.
1947.
van Dam, Edwin R.
Rennen, Gijs
and
Husslage, Bart
2009.
Bounds for Maximin Latin Hypercube Designs.
Operations Research,
Vol. 57,
Issue. 3,
p.
595.
Fu, L.
Liew, S. C.
and
Huang, J.
2009.
Power Controlled Scheduling with Consecutive Transmission Constraints: Complexity Analysis and Algorithm Design.
p.
1530.
Pronzato, Luc
and
Müller, Werner G.
2012.
Design of computer experiments: space filling and beyond.
Statistics and Computing,
Vol. 22,
Issue. 3,
p.
681.
Fekete, Sándor P.
von Höveling, Sven
and
Scheffer, Christian
2019.
Algorithms and Data Structures.
Vol. 11646,
Issue. ,
p.
366.
Joós, Antal
and
Nagy, Bálint
2020.
Optimal packings of 2,3, and 4 equal balls into a cubical flat 3-torus.
Bollettino dell'Unione Matematica Italiana,
Vol. 13,
Issue. 3,
p.
335.