Published online by Cambridge University Press: 20 November 2018
Travelling wave solutions to the vortex filament flow generated by elastica produce surfaces in ${{\mathbb{R}}^{3}}$ that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classified in the special cases where the helices are all congruent or are all generated by a single screw motion. The first case yields a new characterization for the Bäcklund transformation for constant torsion curves in ${{\mathbb{R}}^{3}}$, previously derived fromthe well-known transformation for pseudospherical surfaces. A similar investigation for surfaces in ${{H}^{3}}$ or ${{S}^{3}}$ leads to a new transformation for constant torsion curves in those spaces that is also derived from pseudospherical surfaces.