No CrossRef data available.
Article contents
The isotrivial case in the Mordell-Lang conjecture for semiabelian varieties defined over fields of positive characteristic
Published online by Cambridge University Press: 13 January 2025
Abstract
Let G be a semiabelian variety defined over a finite subfield of an algebraically closed field K of prime characteristic. We describe the intersection of a subvariety X of G with a finitely generated subgroup of $G(K)$.
MSC classification
Secondary:
14G17: Positive characteristic ground fields
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society
References
Corvaja, P., Ghioca, D., Scanlon, T., and Zannier, U.,
The dynamical Mordell-Lang conjecture for endomorphisms of semiabelian varieties defined over fields of positive characteristic
. J. Inst. Math. Jussieu 20(2021), no. 2, 669–698.CrossRefGoogle Scholar
Faltings, G.,
The general case of S. Lang’s conjecture.
In: Barsotti symposium in algebraic geometry (Abano Terme, 1991), Perspectives in Mathematics, 15, Academic Press, San Diego, CA, 1994, 175–182.CrossRefGoogle Scholar
Ghioca, D.,
The isotrivial case in the Mordell-Lang theorem
. Trans. Amer. Math. Soc. 360(2008), no. 7, 3839–3856.CrossRefGoogle Scholar
Ghioca, D. and Yang, S.,
The Mordell-Lang conjecture for semiabelian varieties defined over fields of positive characteristic
. Bull. Aust. Math. Soc. 109(2024), no. 2, 254–264.CrossRefGoogle Scholar
Ginsburg, S. and Spanier, E. H.,
Semigroups, Presburger Formulas, and Languages
. Pac. J. Math. 16(1966), 285–296.CrossRefGoogle Scholar
Hieronymi, P. and Schulz, C., A strong version of Cobham’s theorem. In: STOC’22-Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2022, 1172–1179.CrossRefGoogle Scholar
Hrushovski, E.,
The Mordell-Lang conjecture for function fields
. J. Amer. Math. Soc. 9(1996), no. 3, 667–690.CrossRefGoogle Scholar
Laurent, M.,
Équations diophantiennes exponentielles
. Invent. Math. 78(1984), 299–327.CrossRefGoogle Scholar
Moosa, R. and Scanlon, T.,
F-structures and integral points on semiabelian varieties over finite fields
. Amer. J. Math. 126(2004), 473–522.CrossRefGoogle Scholar
Skolem, T., Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. C. r. 8 congr. scand. á Stockholm (1934), 163–188.Google Scholar
Vojta, P.,
Integral points on subvarieties of semiabelian varieties. I
. Invent. Math. 126(1996), no. 1, 133–181.CrossRefGoogle Scholar