Published online by Cambridge University Press: 20 November 2018
Marshall Hall [l] shows how projective planes of very general structure may be constructed and at the same time exhibits an extensive class which are non-Desarguesian. Here we shall indicate how his method of free extension can be generalized to yield a class of planes which seem to be distinct from those which he obtains.
A partial plane is a system consisting of two distinct sets of elements, a set of "points" P, Q,… and a set of "lines" l, m,…, and a relation between these two sets, called "incidence", such that for any two distinct points, there is at most one line incident with both (or, equivalently, for any two distinct lines, there is at most one point incident with both). A partial plane is complete if every two distinct points are joined by a line and every two distinct lines intersect in a point.