Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T22:14:56.815Z Has data issue: false hasContentIssue false

On Antichains of Spreading Models of Banach Spaces

Published online by Cambridge University Press:  20 November 2018

Pandelis Dodos*
Affiliation:
National Technical University of Athens, Faculty of Applied Sciences, Department of Mathematics, Zografou Campus, 157 80, Athens, Greece e-mail: pdodos@math.ntua.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that for every separable Banach space $X$, either $\text{S}{{\text{P}}_{w}}\left( X \right)$ (the set of all spreading models of $X$ generated by weakly-null sequences in $X$, modulo equivalence) is countable, or $\text{S}{{\text{P}}_{w}}\left( X \right)$ contains an antichain of the size of the continuum. This answers a question of S. J. Dilworth, E. Odell, and B. Sari.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Androulakis, G., Odell, E., Schlumprecht, T., and Tomczak-Jaegermann, N., On the structure of the spreading models of a Banach space. Canad. J. Math. 57(2005), no. 4, 673707.Google Scholar
[2] Argyros, S. A. and Dodos, P., Genericity and amalgamation of classes of Banach spaces. Adv. Math. 209(2007), no. 2, 666748. doi:10.1016/j.aim.2006.05.013Google Scholar
[3] Argyros, S. A. and Todorčević, S., Ramsey Methods in Analysis. Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser-Verlag, Basel, 2005.Google Scholar
[4] Bossard, B., A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fund. Math. 172(2002), 117152. doi:10.4064/fm172-2-3Google Scholar
[5] Dilworth, S. J., Odell, E., and Sari, B., Lattice structures and spreading models. Israel J. Math. 16(2007), 387411. doi:10.1007/s11856-007-0084-9Google Scholar
[6] Ferenczi, V. and Rosendal, C., Complexity and homogeneity in Banach spaces. In: Banach Spaces and Their Applications in Analysis. Walter de Gruyter, Berlin, 2007, pp. 83110.Google Scholar
[7] Harrington, L., Marker, D., and Shelah, S., Borel orderings. Trans. Amer. Math. Soc. 310(1988), no. 1, 293302. doi:10.2307/2001122Google Scholar
[8] Harrington, L. and Shelah, S., Counting equivalence classes of co-κ-Suslin equivalence relations. In: Logic Colloquium ‘80. Stud. Logic Foundations Math. 108. North-Holland, Amsterdam, 1982, pp. 147152.Google Scholar
[9] Kechris, A. S., Classical Descriptive Set Theory. Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995.Google Scholar
[10] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces. I. Ergebnisse der Mathematik und ihrer Grenzgebiete 97. Springer-Verlag, Berlin, 1996.Google Scholar
[11] Louveau, A., Two results on Borel orders. J. Symbolic Logic 54(1989), no. 3, 865874. doi:10.2307/2274748Google Scholar
[12] Louveau, A. and Saint-Raymond, J., On the quasi-ordering of Borel linear orders under embeddability. J. Symbolic Logic 55(1990), no. 2, 537560. doi:10.2307/2274645Google Scholar
[13] Martin, D. A. and Kechris, A. S., Infinite games and effective descriptive set theory. In: Analytic Sets. Academic Press, 1980, pp. 403470.Google Scholar
[14] Pełczynśki, A., Universal bases. Studia Math. 32(1969), 247268.Google Scholar
[15] Rosendal, C., Incomparable, non-isomorphic and minimal Banach spaces. Fund. Math. 183 2004), no. 3, 253274. doi:10.4064/fm183-3-5Google Scholar
[16] Sari, B., On Banach spaces with few spreading models. Proc. Amer. Math. Soc. 134(2005), no. 5, 13391345. doi:10.1090/S0002-9939-05-08078-0Google Scholar
[17] Silver, J. H., Counting the number of equivalence classes of Borel and coanalytic equivalence relations. Ann. Math. Logic 18(1980), no. 1, 128. doi:10.1016/0003-4843(80)90002-9Google Scholar