Article contents
On Functions Whose Graph is a Hamel Basis, II
Published online by Cambridge University Press: 20 November 2018
Abstract
We say that a function $h\,:\,\mathbb{R}\,\to \,\mathbb{R}$ is a Hamel function $(h\,\in \,\text{HF)}$ if $h$, considered as a subset of ${{\mathbb{R}}^{2}},$ is a Hamel basis for ${{\mathbb{R}}^{2}}.$ We show that $\text{A}\left( \text{HF} \right)\,\ge \,\omega$, i.e., for every finite $F\,\subseteq \,{{\mathbb{R}}^{\mathbb{R}}}$ there exists $f\,\in \,{{\mathbb{R}}^{\mathbb{R}}}$ such that $f\,+\,F\,\subseteq \,\text{HF}$. From the previous work of the author it then follows that $\text{A}\left( \text{HF} \right)\,=\,\omega$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2009
References
- 2
- Cited by