Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T06:04:44.145Z Has data issue: false hasContentIssue false

On the Relative Widths of Coverings by Convex Bodies

Published online by Cambridge University Press:  15 March 2019

W.O.J. Moser*
Affiliation:
University of Saskatchewan and Research Institute C.M.C.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this note is to give an elementary proof of a special case of a theorem suggested by Th. Bang (2; 3) and proved by Lee et al (5; see also 1; 4; 6; 7; 8).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1958

References

1. Bang, Th., On coverings by parallel - strips Tidskr B., (1950), 49-53; 12, 352.Google Scholar
2. Bang, Th., A solution of the plank problem, Proc. Amer. Math. Soc., 2 (1951), 990-993; M. R. 13, 769.Google Scholar
3. Bang, Th., Some remarks on the Union of Convex bodies, Tolfte Skand. Kong., (1954), 5-11; M. R. 16, 395.Google Scholar
4. Fenchol, W., On Th. Bang’s solution of the plank problem Math. Tidskr B., (1951), 49-51; M.R. 13, 863.Google Scholar
5. Lee, Tzer-Yee et al, A solution of Bang’s “plank problem” J. Chinese Math. Soc., 2 (1953), 139-143; M. R. 17, 185.Google Scholar
6. Ohmann, D., Eine Abschatzung fur die Dicke bei Uberdeckung durch konvexe Korper J. Reine angew. Math.. 190 (1952), 195-128; M.R. 14, 788.Google Scholar
7. Ohmann, D., Kurzer Beweis einer Abschatzung fur die Breite bei Uberdeckung durch konvexe Korper Arch. Math.. 8 (1957), 150-152.Google Scholar
8. Straszewics, S., Un thorme sur la largeur des ensembles convexes, Ann. Soc. Polon. Math.. 21 (1948), 90-93; M.R. 10, 205.Google Scholar