Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:14:38.867Z Has data issue: false hasContentIssue false

Power Residue Criteria for Quadratic Units and the Negative Pell Equation

Published online by Cambridge University Press:  20 November 2018

Tommy Bülow*
Affiliation:
Department of Mathematics, University of Copenhagen, DK-2100 Copenhagen, Denmark, email: tommy@math.ku.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $d\,>\,1$ be a square-free integer. Power residue criteria for the fundamental unit ${{\varepsilon }_{d}}$ of the real quadratic fields $\mathbb{Q}(\sqrt{d})$ modulo a prime $p$ (for certain $d$ and $p$) are proved by means of class field theory. These results will then be interpreted as criteria for the solvability of the negative Pell equation ${{x}^{2}}\,-\,d{{p}^{2}}{{y}^{2}}\,=\,-1$. The most important solvability criterion deals with all $d$ for which $\mathbb{Q}(\sqrt{-d})$ has an elementary abelian 2-class group and $p\,\equiv \,5$ (mod 8) or $p\,\equiv \,9$ (mod 16).

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[1] Cassels, J. W. S. and Fröhlich, A., Algebraic Number Theory. Thompson, Washington D.C, 1967.Google Scholar
[2] Dirichlet, P. G. L., Einige neue Sätze über unbestimmte Gleichungen. Gesammelte Werke, Chelsea, New York, 219236.Google Scholar
[3] Furuta, Y., Norm of Units of Quadratic Fields. J. Math. Soc. Japan 11 (1959), 139145.Google Scholar
[4] Halter-Koch, F., Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten. Manuscripta Math 54 (1986), 453492.Google Scholar
[5] Hasse, H., Vorlesungen über Klassenkörpertheorie. Physica-Verlag, Würzburg, 1967.Google Scholar
[6] Hecke, E., Lectures on the Theory of Algebraic Numbers. Springer-Verlag, 1981.Google Scholar
[7] Jensen, Chr. U., On the Solvability of a Certain Class of non-Pellian Equations. Math. Scand. 10 (1962), 7184.Google Scholar
[8] Jensen, Chr. U., On the Diophantine Equation ξ2 − 2m2η2 = −1. Math. Scand. 11 (1962), 5862.Google Scholar
[9] Perrot, J., Sur l'equation t2 − Dy2 = −1. J. Reine Angew.Math. 102 (1888), 185223.Google Scholar
[10] Rédei, L., Bedingtes Artinsymbol mit Anwendungen in der Klassenkörpertheorie. Acta Math. Sci. Hung. 4 (1953), 129.Google Scholar
[11] Rédei, L., Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung. Acta Math. Sci. Hung. 4 (1953), 3187.Google Scholar
[12] Rédei, L. and Reichardt, H., Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörbers. J. Reine Angew.Math. 170 (1934), 6974.Google Scholar
[13] Scholz, A., Über die Lo¨sbarkeit der Gleichung t2 − Du2 = −4. Math. Zeitschrift 39 (1935), 95111.Google Scholar