Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T19:21:58.409Z Has data issue: false hasContentIssue false

Etude au Microscope electronique de quelques silicates phylliteux obtenus par synthese a basse temperature

Published online by Cambridge University Press:  14 March 2018

S. Caillère
Affiliation:
Laboratorie des sols, C.N.R.A., Versailles Laboratoire de Minéralogie du Muséum, Rue Buffon, Paris
A. Oberlin
Affiliation:
Laboratorie des sols, C.N.R.A., Versailles Laboratoire de Minéralogie du Muséum, Rue Buffon, Paris
S. Hénin
Affiliation:
Laboratorie des sols, C.N.R.A., Versailles Laboratoire de Minéralogie du Muséum, Rue Buffon, Paris
Get access

Abstract

Clay minerals have been prepared by synthesis in solutions of comparable strength to their solubility (10–20 mgm./l). Syntheses have been carried out in boiling water and at normal temperatures, at various pH's, and with various components; the products have been examined with X-rays and the electron microscope. In general it is found that the proportion of the components has only a small effect on the product, this being determined mainly by the pH. The low temperature gives less crystalline products. Some results are:

Si-Mg syntheses.—Montmorillonite: “crushed paper” type at pH 9 (Fig. 1); “star” type at pH 8 (Fig. 2 from boiling solutions, Fig. 3 at ordinary temperature).

Si-Mg-Al syntheses.—Al as aluminate at pH 8 gives montmorillonite; with more Al, “swelling chlorite” (and 7Å mineral?) (Fig. 4). With cationic Al at pH 8·5 a filmy, almost amorphous product (sepiolite?) (Fig. 5); at pH 7·7 boeh-mite (Fig. 6). Anionic Al with KCl in great excess gives micas (Fig. 7).

Syntheses with iron.—Iron-rich saponites, montmorillonite minerals, and Fe2O3+“swelling chlorite” have been obtained. In NaCl excess, mica-like (but isotropic, poorly crystalline) products (Fig. 8).

The authors consider that the brucite-gibbsite layer forms first in these syntheses, and the silicate layer attaches itself to it: analogous products have been made with aluminate and chromate in place of silicate.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caillère, S. et Hénin, S., 1950. C. R. Congrès internat. de la Sci. du Sol, Amsterdam, Voi. I., p. 8688.Google Scholar
Caillère, S., Hénin, S. et Esquevin, J., 1953. Bull. Soc. fr. Min., 76, 300314.Google Scholar
Caillère, S., Mathieu-Sicaud, A. et Hénin, S., 1950. Bull. Soc. fr. Min., 73, 193201.Google Scholar
Hénin, S. et Robichet, O., 1953. C.R., 236, 517.Google Scholar
Stranski, I. N., 1949. Discus. Faraday Soc, 5, 1321.Google Scholar
Strese, H. et Hofmann, U., 1941. Zs. anorg. Chemie., 247 65.Google Scholar
Von Weimarn., Alexander, Dans, Colloid Chemistry.” The Chemical Catalog Co. T. I., p. 1927.Google Scholar