Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T01:16:27.875Z Has data issue: false hasContentIssue false

Comparison of the dry densities of highly compacted bentonites

Published online by Cambridge University Press:  09 July 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
M. Klinkenberg
Affiliation:
IEF-6, Institut für Energieforschung - Sicherheitsforschung und Reaktortechnik (IEF-6), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
*

Abstract

Bentonites are in worldwide use as candidate materials for the encapsulation of high-level radioactive waste (HLRW). To effectively seal waste canisters, bentonite is compacted to bentonite blocks which can be used to build a wall around the canisters. Compaction significantly improves the swelling pressure, which is currently considered as one of the most important parameters for assessing barrier performance. Most of the studies on compressibility of bentonites consider a few different materials only, which does not lead to a general understanding of bentonite performance. In order to identify the actual compressibility differences of different bentonites, a sizeable set of well characterized materials was investigated with respect to the dry densities after compaction.

Different results were obtained for bentonites that had been dried and bentonites that were equilibrated at 70% r.h. (relative humidity) prior to compaction. The dry density of dried bentonites depends on total porosity and particle density. However, the dry density of microporous bentonites depends on the microporosity rather than total porosity because microporosity is not reduced upon compaction. On the other hand, for the samples previously equilibrated at 70% r.h., the water content is most important. However, the water content, i.e. the water uptake capacity at 70% r.h., in turn largely depends on the CEC but also on microporosity. Therefore, under a given load, the 36 bentonites studied showed a significant range of resulting dry densities, depending on water content, CEC and porosity.

In conclusion, for a given bentonite, the dry density after compaction explains some geotechnical parameters such as the swelling pressure. However, for reasons explained in the present study, the dry density cannot be generally used to predict these parameters.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baille, W., Schanz, T., Kaufhold, S. & Dohrmann, R. (2010) Swelling pressures of selected bentonites. Pp. 731–732 in: 4th International Meeting: Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Nantes, France, 29.3.-1.4.2010, program & abstracts.Google Scholar
Bolt, G.H. (1956) Physico-chemical analysis of the compressibility of pure clays. Géotechnique, 6, 86–93.Google Scholar
Chapman, D.L. (1913) A contribution to the theory of electro-capillarity. Philosophical Magazine, 25, 475–481.Google Scholar
Delage, P., Marcial, D., Cui, Y.I. & Ruiz, X. (2006) Ageing effects in a compacted bentonite: a microstructure approach. Géotechnique, 56, 291–304.Google Scholar
Göbel, I., Alheid, H-J., Alonso, E., Ammon, Ch., Bossart, P., Bühler, Ch., Emmerich, K., Fernandez, A.M., García-Siñeriz, J.L., Graf, A., Jockwer, N., Kaufhold, S., Kech, M., Klubertanz, G., Lloret, A., Mayor, J.C., Meyer, T., Miehe, R., Muñoz, J.J., Naumann, M., Nussbaum, Ch., Pletsch, T., Plischke, I., Ploetze, M., Rey, M., Schnier, H., Schuster, K., Sprado, K.-H., Trick, T., Weber, H., Wieczorek, K. & Zingg, A. (2007) Heater Experiment: rock and bentonite thermohydromechanical (THM) processes in the near field of a thermal source for development of deep underground high-level radioactive waste repositories. Final report of the EU Project HE, Project No. FIS5-2001-00024, contract No. FIKW-CT-2001- 00132, 106 pp.Google Scholar
Gouy, G. (1910) Electrical charge on the surface of an electrolyte. Journal of Physics, 4, 457.Google Scholar
Hoffmann, C., Alonso, E.E. & Romero, E. (2007) Hydromechanical behaviour of bentonite pellet mixtures. Physics and Chemistry of the Earth, 32, 832–849.Google Scholar
IUPAC [Rouquérol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W. & Unger, K.K.] (1994) Recommendations for the characterisation of porous solids (Recommendations 1994). Pure and Applied Chemistry, 66, 1739–1758.Google Scholar
Johannesson, L.-E., Börgesson, L. & Sandén, T. (1995) Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man. Technical Report TR-95- 19, Clay Technology, SKB, Sweden.Google Scholar
Kaufhold, S. & Dohrmann, R. (2003) Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für angewandte Geologie, ISSN 0044- 2259, 2/2003, 13–18.Google Scholar
Kaufhold, S. & Dohrmann, R. (2008a) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 50–59.CrossRefGoogle Scholar
Kaufhold, S. & Dohrmann, R. (2008b) Comparison of the traditional Enlsin-Neff method and the modified Dieng method for measuring water-uptake capacity. Clays and Clay Minerals, 56, 686–692.Google Scholar
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338–343.Google Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S. & Ufer, K. (2010a) The BET surface area of bentonites. Journal of Colloid and Interface Science, 349, 275–282.Google Scholar
Kaufhold, S., Dohrmann, R. & Klinkenberg, M. (2010b) Water uptake capacity of bentonites. Clays and Clay Minerals, 58, 37–43.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Stucki, J. W. & Anastácio, A.S. (2011) Layer charge density of smecrites – closing the gap between the structural formula method and the alkyl ammonium method. Clays and Clay Minerals, 59, 200–211.Google Scholar
Kaufhold, S., Plötze, M., Klinkenberg, M. & Dohrmann, R. (2013) Density and porosity of bentonites. Journal of Porous Materials, 20, 191–208.Google Scholar
Klinkenberg, M. (2008) Einfluss des Mikrogefüges auf ausgewählte petrophysikalische Eigenschaften von Tongesteinen und Bentoniten. PhD thesis, Georg-August-Universität Göttingen. Available online at http://webdoc.sub.gwdg.de/diss/2008/klinkenberg/klinkenberg.pdf. Google Scholar
Lloret, A. & Villar, M.V. (2007) Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Physics and Chemistry of the Earth, 32, 701–715.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with triethylenetetramine and tretraethylenepentamine. Clays and Clay Minerals, 47, 386–388.Google Scholar
Müller-Vonmoos, M. & Kahr, G. (1985) Langzeitstabilität von Bentonit unter Endlagerbedingungen. Technischer Bericht, Nagra, 85-25.Google Scholar
Pusch, R. (2002a) The Buffer and Backfill Handbook, Part 1 – Definitions, Basic Relationships, and Laboratory Methods. SKB Technical Report TR 02-20.Google Scholar
Pusch, R. (2002b) The Buffer and Backfill Handbook, Part 2 – Materials and Techniques. SKB Technical Report TR 02-12.Google Scholar
Shirazi, S.M., Kazama, H., Salman, F.A., Othman, F. & Akib, S. (2010a) Permeability and swelling characteristics of bentonite. International Journal of the Physical Sciences, 5, 1647–1659.Google Scholar
Shirazi, S.M., Kazama, H., Kuwano, J. & Tachibana, S. (2010b) Prediction of maximum swelling deformation for compacted bentonite. International Journal of the Physical Sciences, 5, 1537–1543.Google Scholar
Tripathy, S. & Schanz, T. (2007) Compressibility behaviour of clays at large pressures. Canadian Geotechnical Journal, 44, 355–362.CrossRefGoogle Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272–282.Google Scholar