Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T14:16:07.403Z Has data issue: false hasContentIssue false

Kaolinite-potassium acetate and halloysite-potasium acetate complexes prepared by mechanochemical, solution and homogenization techniques: a comparative study

Published online by Cambridge University Press:  27 February 2018

É. Mako*
Affiliation:
Institute of Materials Engineering, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary
A. Kovács
Affiliation:
Institute of Materials Engineering, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary
E. Horváth
Affiliation:
Institute of Environmental Engineering, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary
J. Kristóf
Affiliation:
Institute of Chemistry, University of Pannnonia, H-8201 Veszprém, P.O. Box 158, Hungary

Abstract

Kaolinite- and halloysite-potassium acetate complexes were synthesized by cogrinding with solid potassium acetate (mechanochemical intercalation). The efficiency of mechanochemical intercalation was compared to the intercalation in solution and by homogenization. The effects of ageing and grinding parameters (grinding time, sample:grinding body mass ratio (SGMR), rotational speed) and the humidity on the intercalation were studied. The degree of intercalation increased exponentially with ageing of the samples prepared by mechanochemical and homogenization techniques. For the mechanochemical and homogenization techniques the required amount of potassium acetate per gram of kaolin (∼0.4 g/g) was two orders of magnitude lower than that for the solution intercalation (78.6 g/g). The highest degree of intercalation (86%) and the lowest structural deformation were achieved by the mechanochemical method (¼ h of co-grinding with 1:2 SGMR at 300 rpm), followed by 16 h ageing at 57% relative humidity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1988) Hydrous Phyllosilicates (Exclusive of Micas). Mineralogical Society of America, Reviews in Mineralogy, 19.Google Scholar
Bergaya, F. & Lagaly, G. (2013) Handbook of Clay Science, Developments in Clay Science, 5. Elsevier, Amsterdam.Google Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science, Developments in Clay Science, 1. Elsevier, Amsterdam.Google Scholar
Cheng, H., Liu, Q., Zhang, J., Yang, J. & Frost, R.L. (2010a) Delamination of kaolinite–potassium acetate intercalates by ball-milling. Journal of Colloid and Interface Science, 348, 355359.Google Scholar
Cheng, H., Liu, Q., Yang, J., Du, X. & Frost, R.L. (2010b) Influencing factors on kaolinite–potassium acetate intercalation complexes. Applied Clay Science, 50, 476480.Google Scholar
Cheng, H., Liu, Q., Yang, J., Zhang, Q. & Frost, R.L. (2010c) Thermal behavior and decomposition of kaolinite–potassiumacetate intercalation composite. Thermochimica Acta, 503-504, 1620.Google Scholar
Cheng, H., Liu, Q., Yang, J., Zhang, J., Frost, R.L. & Du, X. (2011) Infrared spectroscopic study of halloysitepotassium acetate intercalation complex. Journal of Molecular Structure, 990, 2125.CrossRefGoogle Scholar
Cheng, H., Liu, Q., Yang, J., Ma, S. & Frost, R.L. (2012a) The thermal behavior of kaolinite intercalation complexes-A review. Thermochimica Acta, 545, 113.CrossRefGoogle Scholar
Cheng, H., Liu, Q., Cui, X., Zhang, Q., Zhang, Z. & Frost, R.L. (2012b) Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. Journal of Colloid and Interface Science, 376, 4756.CrossRefGoogle ScholarPubMed
Churchman, G.J. & Carr, R.M. (1973) Dehydration of the potassium acetate complex of halloysite. Clays and Clay Minerals, 21, 423424.CrossRefGoogle Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.Google Scholar
Deng, Y., White, G.N. & Dixon, J.B. (2002) Effect of structural stress on the intercalation rate of kaolinite. Journal of Colloid and Interface Science, 250, 379393.Google Scholar
Dinnebier, R.E. & Billinge, S.J.L. (2008) Powder Diffraction Theory and Practice. The Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Frost, R.L., Tran, T.H. & Kristóf, J. (1997) FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates. Vibrational Spectroscopy, 13, 175186.Google Scholar
Frost, R.L., Kristof, J., Paroz, G.N., Tran, T.H. & Kloprogge, J.T. (1998) The role of water in the intercalation of kaolinite with potassium acetate. Journal of Colloid and Interface Science, 204, 227236.Google Scholar
Frost, R.L., Kristóf, J. Horvath, E. & Kloprogge, J.T. (1999) Modification of kaolinite surfaces through intercalation with potassium acetate, II. Journal of Colloid and Interface Science, 214, 109117.CrossRefGoogle ScholarPubMed
Frost, R.L., Kristóf, J. Horvath, E. & Kloprogge, J.T. (2000) Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. Journal of Colloid and Interface Science, 226, 318327.Google Scholar
Frost, R.L., Locos, O.B., Kristóf, J. & Klopprogge, J.T. (2001) Infrared spectroscopic study of potassium and cesium acetate-intercalated kaolinites. Vibrational Spectroscopy, 26, 3342.Google Scholar
Frost, R.L., Kristóf, J. Makó, E. & Martens, W.N. (2002) Modification of the hydroxyl surface of kaolinite through mechanochemical treatment followed by intercalation with potassium acetate. Langmuir, 18, 64916499.Google Scholar
Frost, R.L., Horváth, E. Makó, É. & Kristóf, J. (2004) Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing. Journal of Colloid and Interface Science, 270, 337346.Google Scholar
Gábor, M., Tóth, M. Kristóf, J. & Komáromi-Hiller, G. (1995) Thermal behavior and decomposition of intercalated kaolinite. Clays and Clay Minerals, 43, 223228.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.Google Scholar
Horváth, E., Frost, R.L., Makó, É., Kristóf, J. & Cseh, T. (2003) Thermal treatment of mechanochemically activated kaolinite. Thermochimica Acta, 404, 227234.Google Scholar
Horváth, E., Kristóf, J. & Frost, R.L. (2010) Vibrational Spectroscopy of Intercalated Kaolinites. Part I. Applied Spectroscopy Reviews, 45, 130147.CrossRefGoogle Scholar
Janek, M., Emmerich, K., Heissler, S. & Nüesch, R. (2007) Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chemisry of Materials, 19, 684693.CrossRefGoogle Scholar
Kristóf, E., Juhász, A.Z. & Vassányi, I. (1993a) The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite. Clays and Clay Minerals, 41, 608612.Google Scholar
Kristóf, J., Mink, J., Horváth, E. & Gábor, M. (1993b) Intercalation study of clay minerals by Fourier transform infrared spectrometry. Vibrational Spectroscopy, 5, 6167.CrossRefGoogle Scholar
Kristóf, J., Tóth, M., Gábor, M. Szabó, P. & Frost, R.L. (1997) Study of the structure and thermal behaviour of intercalated kaolinites. Journal of Thermal Analysis, 49, 14411448.Google Scholar
Kristóf, J., Frost, R.L., Horváth, E. Kocsis, L. & Inczédy, J. (1998) Thermoanalytical investigations on intercalated kaolinites. Journal of Thermal Analysis, 53, 467475.Google Scholar
Lagaly, G. (1984) Clay-organic interaction. Philosophical Transaction of the Royal Society of London, A 311, 315332.Google Scholar
Ledoux, R.L. & White, J.L. (1966) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea. Journal of Colloid and Interface Science, 21, 127152.Google Scholar
Makó, É., Kristóf, J. Horváth, E. & Vágvölgyi, V. (2009) Kaolinite-urea complexes obtained by mechanochemical and aqueous suspension techniques – a comparative study. Journal of Colloid and Interface Science, 330, 367373.Google Scholar
Makó, É., Rutkai, G. & Kristóf, T. (2010) Simulationassisted evidence for the existence of two stable kaolinite/potassium acetate intercalate complexes. Journal of Colloid and Interface Science, 349, 442445.Google Scholar
Makó, É., Kristóf, J. Horváth, E. & Vágvölgyi, V. (2013) Mechanochemical intercalation of low reactivity kaolinite. Applied Clay Science, 83-84, 2431.Google Scholar
Maxwell, Ch.B. & Malla, P.B. (1997) Kaolin-potassium acetate intercalation complex and process of forming same. United States Patent, US5672555 A.Google Scholar
Rutkai, G. & Kristóf, T. (2008) Molecular simulation study of intercalation of small molecules in kaolinite. Chemical Physics Letters, 462, 269274.Google Scholar
Singh, B. & Mackinnon, I.D.R. (1996) Experimental transformation of kaolinite to halloysite. Clays and Clay Minerals, 44, 825834.Google Scholar
Valášková, M., Rieder, M., Matějka, V. Čapková, P. & Slíva, A. (2007) Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates. Applied Clay Science, 35, 108118.Google Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist, 46, 7891.Google Scholar
Weiss, A., Thielepape, W. & Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen. Pp. 277–293 in: Proceedings of the International Clay Conference (T. Rosenquist & P. Graff-Pettersen, editors). Volume 1, Jerusalem.Google Scholar
White, C.E., Provis, J.L., Gordon, L.E., Riley, D.P., Proffen, T. & Deventer, J.S.J. (2011) Effect of temperature on the local structure of kaolinite intercalated with potassium acetate. Chemisry of Materials, 23, 188199.Google Scholar
Wiewióra, A. & Brindley, G.W. (1969) Potassium acetate intercalation in kaolinites and its removal: effect of material characteristics. Pp. 723–733 in: Proceedings of the International Clay Conference Tokyo (L. Heller, editor). Israel University Press, Jerusalem.Google Scholar
Yariv, S. & Lapides, I. (2008) Thermo-infrared spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes. Journal of Thermal Analysis and Calorimetry, 94, 433440.Google Scholar
Yariv, S., Nasser, A., Michaelian, K.H., Lapides, I., Deutsch, Y. & Lahav, N. (1994) Thermal treatment of the kaolinite/CsCl/H2O intercalation complex. Thermochimica Acta, 234, 275285.Google Scholar
Zhang, B., Li, Y., Pan, X., Jia, X. & Wang, X. (2007) Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization. Journal of Physics and Chemistry of Solid, 68, 135142.Google Scholar
Zhang, J., Cheng, H., Liu, Q., He, J. & Frost, R.L. (2011) Mid-infrared and near-infrared spectroscopic study of kaolinite-potassium acetate intercalation complex. Journal of Molecular Structure, 994, 5560.Google Scholar