Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T00:56:55.707Z Has data issue: false hasContentIssue false

A mathematical model to distinguish the members of the dioctahedral smectite series

Published online by Cambridge University Press:  09 July 2018

M. F. Brigatti
Affiliation:
Istituto di Mineralogia e Petrologia, Università di Modena, Via S. Eufemia 19, 1-41100 Modena
L. Poppi
Affiliation:
Istituto di Mineralogia e Petrografia, Università di Bologna, S. Donato 1, 1-40100 Bologna, Italy

Abstract

Statistical (Q-mode) analysis of the chemical compositions of 122 dioctahedral smectites obtained from the literature have enabled the main solid solution ranges (montmorillonite, beidellite and nontronite) to be distinguished on a triangular diagram. In the montmorillonite area, the Wyoming, Tatatilla, Otay, Chambers and Non-Ideal montmorillonite compositional ranges are identified. Certain crystallochemical features of the smectites may be correlated with different genetic environments.

Resume

Resume

Vingt smectites dioctaédriques italiennes sont classées d'un point de vue cristallochimique à l'aide de méthodes mathématiques statistiques (Q-mode). Les données correspondant à, 122 échantillons puisés dans la littérature ont été reportées sur un diagramme triangulaire permettant la distinction des principaux domaines de solutions solides (montmorillonite, beidellite, nontronite). Dans la zone de la montmorillonite on identifie la composition de celles du Wymoning, Tatatilla, Otay et Chambers ainsi qu'une non-idéale. Il est possible, en particulier de vérifier la classification correcte des smectites dioctaédriques sur la seule base des connaissances cristallochimiques. Ces données chimiques peuvent êre correllées avec différents environnements génétiques.

Kurzreferat

Kurzreferat

Statistische (Q-mode) Untersuchungen über die chemische Zusammensetzung von 122 dioktaedrischen Smectiten aus der Literatur haben es ermöglicht, die Haupt-Mischkristallbereiche (Montmorillonit, Beidellit und Nontronit) in einem Dreiecksdiagramm zu unterscheiden. In der Montmorillonit Ecke liegen Wyoming, Tatatilla, Otay, Chambers und nicht ideal zusammengesetzte Montmorillonite. Bestimmte kristallchemische Merkmale der Smectite könnten mit unterschiedlichen genetischen Bedingungen im Zusammenhang stehen.

Resumen

Resumen

El análisis estadístico (Q-mode) de las composiciones químicas de 122 esmectitas dioctaédricas obtenidas de la bibliografía han permitido distinguir sobre un diagrama triangular, las principales zonas de soluciones sólidas. En el caso de la montmorillonita, se han identificado la gama de composiciones de las de Wyoming, Tatatilla, Otay, Chambers y No-Ideal. Ciertas características cristaloquímicas de las esmectitas pueden relacionarse con diferentes entornos genéticos.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Byström, Brusewitz A.M. (1975) Studies on the Li test to distinguish between beidellite and montmorillonite. Proc. Int. Clay Conf. Mexico City, 419428.Google Scholar
Davis, J.C.(1973) Statistics and Data Analysis in Geology. John Wiley, New York.Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Miner. 12, 181194.Google Scholar
Foster, M.D. (1960) Interpretation of the composition of trioctahedral micas. U.S. Geol. Survey Prof. Paper, 354-B, 148.Google Scholar
Greene-Kelly, R. (1953) Identification of montmorillonoids. J. Soil Sci., 4, 233237.Google Scholar
Grim, R.E. & Kulbicki, G. (1961) Montmorillonite: high temperature reactions and classification. Am. Miner. 46, 13291369.Google Scholar
Hamilton, J.D. (1971) Beidellitic montmorillonite from Swansea, New South Wales. Clay Miner. 9, 107123.CrossRefGoogle Scholar
Harman, H.H. (1970) Modern factor analysis. University of Chicago Press, Chicago and London.Google Scholar
Kloven, J.E. & Imbrie, J. (1971) An algorithm and fortran IV program for large scale Q-mode factor analysis and calculation of factor score. J. Math. Geol. 3, 113.Google Scholar
Chen, P.-Y., Wan, H.-M. & Brindley, G.W. (1976) Beidellite clay from Chang-Yuan, Taiwan: geology and mineralogy. Clay Miner. 11, 221233.Google Scholar
Poppi, L. & Brigatti, M.F. (1977) Cristallochimica e caratteristiche termiche di alcune montmorilloniti italiane. Miner. Petrogr. Acta 21, 4352.Google Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites. Clays Clay Miner. 17, 115137.Google Scholar
Vogt, K. & Köster, H.N. (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Miner. 13, 2543.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, New York.Google Scholar