Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T08:54:29.915Z Has data issue: false hasContentIssue false

Mineral quantification in sepiolite-palygorskite deposits using X-ray diffraction and chemical data

Published online by Cambridge University Press:  09 July 2018

A. Lopez Galindo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC - University of Granada, Avda. Fuentenueva, s/n. 18002 Granada, Spain
J. Torres Ruiz
Affiliation:
Dpto. Mineralogía y Petrología, Faculty of Science, University of Granada, Spain
J. M. Gonzalez Lopez
Affiliation:
Dpto. Ciencias de la Tierra, Faculty of Science, University of Zaragoza, Spain

Abstract

A quantification technique useful in analysis of clay-rich deposits containing sepiolite and/or palygorskite has been developed by combining diffractometric and chemical data and represents a considerable improvement on classic quantification based on X-ray diffraction. The required data are: intensity ratios between certain diffraction peaks of calcite-dolomite and sepiolite-palygorskite-smectites, and also the CaO, MgO, K2O, Al2O3 and SiO2 contents. The validity of this method was tested by analysis of artificial mixtures of pure phases of the minerals found in such deposits.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E. (1974) Arcillas de ladrilleía de la provincia de Granada: evaluación de algunos ensayos de materias primas. PhD thesis, Univ. Granada, Spain.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803832.CrossRefGoogle Scholar
Calvert, C.S., Palkowsky, D.A. & Pevear, D.R. (1989) A combined X-ray powder diffraction and chemical method for the quantitative mineral analysis of geologic samples. Pp. 154–167 In: Quantitative Mineral Analysis of Clays (Pevear, D.R. & Mumpton, F.A., editors) CMS Workshop Lectures vol. 1.CrossRefGoogle Scholar
De Caritat, P., Bloch, J. & Hutcheon, I. (1994) LPNORM: A linear programming normative analysis code. Computers Geosciences, 20, 313–347.CrossRefGoogle Scholar
Hodgson, M. & Dudeney, A.W. (1984) Estimation of clay proportions in mixtures by X-ray diffraction and computerized chemical mass balance. Clays Clay Miner. 32, 1928.CrossRefGoogle Scholar
Huertas, F. (1969) Los minerales fibrosos de la arcilla. Su genFtica en cuencas sedimentarias espaáolas y sus aplicaciones tecnol6gicas. PhD thesis, Univ. Granada, Spain.Google Scholar
Johnson, L.J., Chu, C.H. & Hussey, G.A. (1985) Quantitative clay mineral analysis using simultaneous linear equations. Clay Clay Miner., 33, 107117.CrossRefGoogle Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631–674 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America.Google Scholar
Leoni, L., Saitta, M. & Sartori, F. (1988) Analisi mineralogica quantitativa di rocce e sedimenti pelitici mediante combinazione di dati diffrattometrici e daft chimici. Rend. Soc. Ital. Miner. Petrol. 43, 743756.Google Scholar
Medina, J.A., Santaren, J., MARTIN RUB! J.A., Casas, J., Cuevas, J., Alvarez, A. & Leguey, S. (1993) Characterization of sepiolite from the Cerro Cantuefia deposit (Parla, Madrid): microstructuree and rheological properties. Pp. 693–696 in: Current Research in Geology Applied to Ore Deposits (Fenoll, P., Torres-Ruiz, J. & Gervilla, F., editors). Univ. Granada, Spain.Google Scholar
Mellinger, R.M. (1979) Quantitative X-ray diffraction analysis of clay minerals. An evaluation. SRC Report, Saskatchewan Research Council, G-79, 1–46.Google Scholar
Merodio, J.C., Spalletti, L.A. & Bertone, L.M. (1992) A Fortran program for the calculation of normative composition of clay minerals and pelitic rocks. Computers Geosciences, 18, 47–61.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford Univ. Press.Google Scholar
Pearson, M.J. (1978) Quantitative clay mineralogical analyses from the bulk chemistry of sedimentary rocks. Clays Clay Miner., 26, 423433.CrossRefGoogle Scholar
Pevear, D.R. & Mumpton, D.R. (1989) Quantitative Mineral Analysis of Clays. CMS Workshop Lectures 1. The Clay Mineral Society, Colorado.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. SurE. Prof. Paper 391-C. 31 pp.CrossRefGoogle Scholar
Torres Rutz, J., Lopez Galindo, A., Gonzalez Lopez, J.M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chem. Geol. 112, 221245.CrossRefGoogle Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, 15. Elsevier.Google Scholar