Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T08:14:28.244Z Has data issue: false hasContentIssue false

Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras

Published online by Cambridge University Press:  09 July 2018

J. H. Kirkman*
Affiliation:
Soil Science Department, Massey University, Pabnerston North, New Zealand

Abstract

The < 1·0 µm fractions of three rhyolitic tephras are shown to contain multifaceted squat cylinders of halloysite at various stages of development. The < 1·0 µm fraction of one of the tephras, the Pahoia Tuff, is composed mainly of large well-ordered squat cylinders, together with amorphous silica flakes, and novel disk-shaped particles of halloysite. The disks always occur sandwiched between silica flakes. A spiral structure is proposed for the disks. The squat cylinders are interpreted as having formed by a similar spiral mechanism to that of the disks, but without the constraining influence of silica flakes.

Résumé

Résumé

La fraction < 1·0 µm de trois tèphres rhyolitiques montre qu'ils contiennent des cylindres applatis d'halloysite à divers stades de développement. La fraction < 1·0 µm d'un des tèphres, le Pahoia Tuff, est composée principalement de grands cylindres applatis bien ordonnés, avec des lames de silice amorphe et de particules originales d'halloysite en forme de disques. Les disques se présentent toujours intercalés entre les lames de silice. Une structure en spirale est suggérée pour les disques. Les cylindres applatis sont interprétés comme ayant été formés par un mécanisme en spirale similaire à celui des disques, mais sans l'influence contraignante des lames de silice.

Kurzreferat

Kurzreferat

Die < 1·0 µm Bruchstücke von drei rhyolitischen Tephras enthalten nachweislich mehrfach facettierte Erznestzylinder aus Halloysit in verschiedenen Entwicklungsstufen. Das < 1·0 µm Bruchstück eines der Tephras, der Pahoia Tuff, setzt sich hauptsächlich aus grossen, gut geordneten Erznestzylindern mit amorphen Silikaflocken und neuartigen, scheibenförmigen Partikeln aus Halloysit zusammen. Die Scheiben treten stets zwischen Silikaflocken geschichtet auf. Für die Scheiben wird ein Spiralgefüge vorgeschlagen. Bei den Erznestzylindern wird angenommen, dass sie sich durch einen ähnlichen Spiralmechanismus wie bei den Scheiben gebildet haben, jedoch ohne den beschränkenden Einfluss von Silikaflocken.

Resumen

Resumen

Se demuestra que las fracciones < 1·0 µm de tres tefras rioliticas contienen cilindros multifacetados achatados de halloysita en diversas etapas de desarrollo. La fracción de < 1·0 µm de una de las tefras, la Toba volcánica Pahoia, está compuesta principalmente de grandes cilindros achatados bien dispuestos, junto con escamas de silice amorfo, y partículas discoides de halloysita de nueva formación. Los discos siempre aparecen emparedados entre escamas de silice. Se sugiere una estructura espiral para los discos. Se interpretan los cilindros achatados como producto de un mecanismo espiral similar al de los discos, aunque sin la influencia constrictiva de las escamas de silice.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. & Miyauchi, N. (1963) Nature, Loud. 199, 1311.CrossRefGoogle Scholar
Aomine, S. & Wada, K. (1962) Am. Miner. 47, 1024.Google Scholar
Askenasy, P.E., Dixon, J.B. & Mckee, T.R. (1971) Agron. Abstr. Am. Soc. Agron., Madison, Wisconsin.Google Scholar
Askenasy, P.E., Dixon, J.B. & Mckee, T.R. (1973) Soil Sci. Soc. Am. Proc. 37, 799.CrossRefGoogle Scholar
Bates, T.F., Hildebrand, F.A. & Swineford, A. (1949) Am. Miner. 34, 274.Google Scholar
Bates, T.F., Hildebrand, F.A. & Swineford, A. (1950) Am. Miner. 35, 463.Google Scholar
Birreix, K.S., Fieldes, M. & Williamson, K.I. (1955) Am. Miner. 40, 122.Google Scholar
Brindley, G.W. (1955) 1st Nat. Conf. Clays Clay Miner. (Pask, J. A. And Turner, M. D., editors), p. 33.Google Scholar
Carr, R.M. & HWA CHIH (1971) Clay Miner. 9, 153.CrossRefGoogle Scholar
Chappell, J. (1975) N.Z. Jl Geol. Geophys. 18, 129.CrossRefGoogle Scholar
Chen, P.Y. (1969) Proc. geol. Soc. China, 12, 30.Google Scholar
Chukhrov, F.V. & Zvyagin, B.B. (1966) Proc. int. Clay Conf. Jerusalem, 1, 11.Google Scholar
Dixon, J.B. & Mckee, T.R. (1974) Trans. 10th int. Congr. Soil Science, Moscow, 7, 115.Google Scholar
Fieldes, M. (1955) N.Z. Jl Sci. Tech. B37, 336.Google Scholar
Galan, E. & MARTIN Vivaldi, J.L. (1973) Bol. Soc. Esp. Ceram. y Vidrio, 12 (6), 333.Google Scholar
Gonzalez Garcia, S. & SANCHEZ Camazano, M. (1968) Clay Miner. 7, 447.CrossRefGoogle Scholar
Jagodzinski, H. VON & Kunze, G. (1954) Neues. Jb. Miner. 137.Google Scholar
Kirkman, J.H. (1974) N.Z. Jl Sci. 17, 503.Google Scholar
Kirkman, J.H. (1975) Clay Miner. 10, 437.Google Scholar
La Iglesia, A. & Galan, E. (1975) Clays Clay Miner. 23, 109.CrossRefGoogle Scholar
Macewan, D.M.C. (1946) Nature, Land. 157, 159.CrossRefGoogle Scholar
Macewen, D.M.C. (1948) Trans. Faraday Soc. 44, 349.CrossRefGoogle Scholar
Nagasawa, K. (1969) Proc. int. Clay Conf. 1, 15.Google Scholar
Nakamura, M.T. & Sherman, G.D. (1965) Hawaii Agric. Experimental Station Tech. Bull. No. 62.Google Scholar
Parham, W.E. (1970) Minnesota Geological Survey SP-10, Minneapolis, Minnesota.Google Scholar
Pullar, W.A. & Heine, J.C. (1971) N.Z. Soil Bur. Publ. 563.Google Scholar
Radoslovich, E.W. (1963) Am. Miner. 48, 368.Google Scholar
Sudo, T. (1953) Miner. JL Sapporo, 1, 66.CrossRefGoogle Scholar
Sudo, T. (1959) Mineralogical study on clays of Japan. Maruzen Co. Ltd, Tokyo.Google Scholar
Sudo, T. & Takahashi, H. (1956) Proc. 4th natl. Conf. Clays Clay Miner. 67.Google Scholar
Tamura, T. & Jackson, M.L. (1953) Science, 117, 381.CrossRefGoogle Scholar
Thompson, D.W. (1961) On Growth and Form. Abridged edition edited by Bonner, J. T.. Cambridge University Press.Google Scholar
Vucetich, C.G. & Pullar, W.A. (1964) Bull. N.Z. geol. Surv. N.S. 73, 43.Google Scholar
Vucetich, C.G. & Pullar, W.A. (1969) N.Z. Jl Geol. Geophys. 12, 784.CrossRefGoogle Scholar
Yada, K. (1967) Acta Cryst. 23, 704.CrossRefGoogle Scholar