Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:54:02.125Z Has data issue: false hasContentIssue false

The effect of dry heating on the chemistry, surface area, and oxalate solubility of synthetic 2-line and 6-line ferrihydrites

Published online by Cambridge University Press:  09 July 2018

H. Stanjek
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, D-8050 Freising-Weihenstephan, Germany
P. G. Weidler
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, D-8050 Freising-Weihenstephan, Germany

Abstract

Synthetic 2-line and 6-line ferrihydrites were heated to 400 K, 500 K and 600 K, under dry conditions. Heating to 400 K lowered the ratios of structural OH to Fe2O3 without a phase transformation. The lowest ratios observed at 400 K were 1·23 (2-line) and 0·85 (6-line ferrihydrite) after 1150 h. For 6-line ferrihydrites heated to 400 K, the solubility in oxalate and the BET surface areas decreased with increasing heating time, whereas the unit-cell parameters, the relative peak intensities and the mean coherence lengths did not change significantly. Heating the 2-line ferrihydrites to 400 K produced microporosity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barron, V., Herruzo, M. & Torrent, J. (1988) Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. Am. J., 52, 647–651.Google Scholar
Breeuwsma, A. (1973) Adsorption of ions on hematite (alpha-Fe2O3)-PhD Thesis, Med. Landbouwhogeschool, Wageningen, Netherlands.Google Scholar
Carlson, L. & Schwertmann, U. (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta, 45, 421–429.Google Scholar
Catlow, C.R.A., Cornish, J., Hennessy, J. & Mackrodt, W.C. (1988) Atomistic simulation of defect structure and ion transport in ar-Fe2O3 and a-Cr2O3. J. Am. Ceram. Soc., 71, 42–49.Google Scholar
Chukrov, F.V., Zvyagin, B.B., Ermilova, L.P. & Gorshkov, A.I. (1973) New data on iron oxides in the weathering zone. Proc. Int. Clay Conf. Madrid, 1, 333–341.Google Scholar
Cornejo, J. & Hermosin, M.C. (1983) Evolucion del “oxido de hierro hidratado” coloidai mediante calentamiento. Bol. Soc. Esp. Mineralogia,, 177–;181.Google Scholar
Cornell, R. M. & Schwertmann, U. (1979) Influence of organic anions on the crystallization of ferrihydrite. Clays Clay Miner., 27, 402–;410.Google Scholar
Crosby, S.A., Glasson, D.R., Cuttler, A.H., Butler, I., Turner, D.R., Whitfield, M. & Millward, G.E. (1983) Surface areas and porosities of Fe(III) and Fe(II)-derived oxyhydroxides. Environ. Sci. Technol., 17, 709–;713.Google Scholar
De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A. & Osinga Th.J. (1966) The f-curve of multimolecular N2-adsorption. Coll. Interf. Sci., 21, 405–414.Google Scholar
Dousma, J. & Bruyn, P.L. (1976) Hydrolysis-precipitation studies of iron solutions. I. Models for hydrolysis and precipitation from Fe(III) nitrate solutions. J. Coll. Interf. Sci., 56, 527–539.Google Scholar
Eggleton, R.A. & Fitzpatrick, R.W. (1988) New data and a revised structural model for ferrihydrite. Clays Clay Miner., 36, 111–124.Google Scholar
Fischer, W.R. (1976) Differenzierung oxalatloslicher Eisenoxide. Z. Pflanzenernähr. Bodenkde., 139, 641–646.Google Scholar
Fischer, W.R. & Schwertmann, U. (1975) The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner., 23, 33–37.CrossRefGoogle Scholar
Gast, R.G., Landa, E.R. & Meyer, G.W. (1974) The interaction of water with goethite (α-FeOOH) and amorphous hydrated ferric oxide surface. Clays Clay Miner., 22, 31–39.Google Scholar
Gehring, A.U., Karthein, R. & Reller, A. (1990) Activated state in the lepidocrocite structure during thermal treatment. Naturwissenschaften, 77, 177–179.Google Scholar
Johnston, J.H. & Lewis, D.G. (1983) A detailed study of the transformation of ferrihydrite to hematite in an aqueous medium at 92°C. Geochim. Cosmochim. Acta, 47, 1823–1831.Google Scholar
Karim, Z. (1984) Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica. Clays Clay Miner., 32, 181–184.Google Scholar
Klisurski, D.G. & Blyskov, V.N. (1981) Effect of water vapour on the dispersity of or-Fe2O3 obtained by decomposition of highly dispersed, trivalent iron hydroxides. Kinetik Katalysis, 22, 1063–1065.Google Scholar
Langford, J.I. & Wilson, A.J.C. (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst., 11, 102–113.Google Scholar
Miller, W.P., Zelazny, L.W. & Martens, D.C. (1986) Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma, 37, 1–13.Google Scholar
Morris, R.V., Lauer, H.V., Schulze, D.G. & Burns, R.G. (1991) Preparation and characterization of a nanophase hematite powder. Lunar Planetary Sci. XXII, 927–;928.Google Scholar
Murphy, P.J., Posner, A.M. & Quirk, J.P. (1976) Characterization of hydrolysed ferric iron solutions. A comparison of the effects of various anions in solutions. J. Coll. Interf. Sci., 56, 312–319.Google Scholar
Parfitt, R.L., Farmer, V.C. & Russell, J.D. (1977) Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite. J. Soil Sci., 28, 29–39.Google Scholar
Russell, J.D. (1973) Infrared spectroscopy of ferrihydrites: Evidence for the presence of structural hydroxyl groups. Clay Miner., 14, 109–114.Google Scholar
Saleh, A.M. & Jones, A. (1984) The crystallinity and surface characteristics of synthetic ferrihydrite and its relationship to kaolinite surfaces. Clay Miner., 19, 745–755.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Losung. Z. Pflanzenernähr. Bodenkde., 105, 194–202.Google Scholar
Schwertmann, U. (1988) Some properties of soil and synthetic iron oxides. Pp. 203-250 in: Iron in Soils and day Minerals.(Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Reidel, Dordrecht.Google Scholar
Schwertmann, U. & Fischer, W.R. (1966) Zur Bildung von α-FeOOH und αFe2O3 aus amorphem Eisen(III) hydroxid. Z. Anorg. AUg. Chemie, 346, 137–142.Google Scholar
Schwertmann, U. & Fischer, W.R. (1973) Natural "amorphous" ferric hydroxide. Geoderma, 10, 237–247.Google Scholar
Schwertmann, U. & Murad, E. (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., 31, 277–284.Google Scholar
Schwertmann, U., Carlson, L. & Fechter, H. (1984) Iron oxide formation in artificial ground waters. Schweiz- Zeitschr. Hyrologie, 46, 185–191.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appi Chem., 57, 603–619.Google Scholar
Stanjek, H. & Schwertmann, U. (1992) The influence of aluminum on iron oxides. Part XVI. Hydroxyl and aluminum substitution in synthetic hematites. Clays Clay Miner(in press).Google Scholar
Torrent, J., Guzman, R. & Parra, M. A. (1982) Influence of relative humidity on the crystallization of Fe(III) oxides from ferrihydrite. Clays Clay Miner., 30, 337–340.Google Scholar
Towe, K.M. (1990) Phosphorus and the ferritin iron core: Function-balanced biomineralization. Pp. 265–;272 in: Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals(R. E. Crick, editor). Plenum Press, New York.Google Scholar
Towe, K. & Bradley, W.F. (1967) MineraJogical constitution of colloidal l(hydrous ferric oxides". J. Coll. Interf. Sci., 24, 384–392.Google Scholar
Wolska, E. (1981) The structure of hydrohematite. Z. Kristallogr., 154, 69–75.Google Scholar
Zinder, B., Furrer, G. & Stumm, W. (1986) The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta, 50, 1861–1869.CrossRefGoogle Scholar