Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:00:36.050Z Has data issue: false hasContentIssue false

Formation of C-A-S-H phases from the interaction between concrete or cement and bentonite

Published online by Cambridge University Press:  02 January 2018

Raúl Fernández*
Affiliation:
Department of Geology and Geochemistry, Faculty of Sciences, Autonomous University of Madrid, Spain
Ana Isabel Ruiz
Affiliation:
Department of Geology and Geochemistry, Faculty of Sciences, Autonomous University of Madrid, Spain
Jaime Cuevas
Affiliation:
Department of Geology and Geochemistry, Faculty of Sciences, Autonomous University of Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Concrete and bentonite are being considered as engineered barriers for the deep geological disposal of high-level radioactive waste in argillaceous rocks. Three hydrothermal laboratory experiments of different scalable complexity were performed to improve our knowledge of the formation of calcium aluminate silicate hydrates (C-A-S-H) at the interface between the two materials: concretebentonite transport columns, lime mortar-bentonite transport columns and a portlandite- (bentonite and montmorillonite) batch experiment. Precipitation of C-A-S-H was observed in all experiments. Acicular and fibrous morphologies with certain laminar characteristics were observed which had smaller Ca/Si and larger Al/Si ratios with increasing temperature and lack of accessory minerals. The compositional fields of these C-A-S-H phases formed in the experiments are consistent with Al/(Si+Al) ratios of 0.2– 0.3 described in the literature. The most representative calcium silicate hydrate (C-S-H) phase from the montmorillonite–cement interface is Al-tobermorite. Structural analyses revealed a potential intercalation or association of montmorillonite and C-A-S-H phases at the pore scale.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Andrade, C., Martínez, I., Castellote, M. & Zuloaga, P. (2006) Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain). Journal of Nuclear Materials, 358, 8295.10.1016/j.jnucmat.2006.06.015CrossRefGoogle Scholar
Blanc, P., Bourbon, X., Lassin, A. & Gaucher, E.C. (2010) Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cement and Concrete Research, 40, 851866.10.1016/j.cemconres.2009.12.004CrossRefGoogle Scholar
Brew, D.R.M. & Glasser, F.P. (2005) Synthesis and characterisation of magnesium silicate hydrate gels. Cement and Concrete Research, 35, 8598.10.1016/j.cemconres.2004.06.022CrossRefGoogle Scholar
Brunet, F., Bertani, P., Charpentier, T., Nonat, A. & Virlet, J. (2004) Application of 29Si homonuclear and 1H -29Si heteronuclear NMR correlation to structural studies of calcium silicate hydrates. The Journal of Physical Chemistry B, 108, 1549415502.10.1021/jp031174gGoogle Scholar
Caballero, E., Jiménez de Cisneros, C., Huertas, E.J., Huertas, F., Pozzuoli, A. & Linares I (2005) Bentonite from Cabo de Gata, Almería, Spain: A mineralogical and geochemical overview. Clay Minerals, 40, 463480.10.1180/0009855054040184CrossRefGoogle Scholar
Cong, X. & Kirkpatrick, R.J. (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Materials, 3, 144156.10.1016/S1065-7355(96)90046-2Google Scholar
Cuevas, J., Vigil de la Villa, R., Ramírez, S., Sánchez, L., Fernández, R. & Leguey, S. (2006) The alkaline reaction of FEBEX bentonite: A contribution to the study of the performance of bentonite/concrete engineered barrier systems. Journal of Iberian Geology, 32, 151174.Google Scholar
Cuevas, J., Fernández, R., Ruiz, A.I., de Soto, I.S., Vigil de la Villa, R., Escribano, A., Torres, E., Villar, M.V. & Turrero, M.J. (2012) Mineral reaction front developed in a 4.5 years test for the study of concrete-bentonite interface. Macla, 16, 128129.Google Scholar
Cuevas, J., Turrero, M.J., Torres, E., Fernández, R., Ruiz, A.I. & Escribano, A. (2013) Laboratory tests at the interfaces: Results of small cells with mortar-benton-ite-magnetite. 83 pp. PEBS Deliverable D2.3-3-2.Google Scholar
Cuevas, J., Fernández, R., Torres, E., Escribano, A., Ruiz, A.I., Regadío, M. & Turrero, M.J. (2014a) An experimental approach to study the long-term alteration of compacted bentonite affected by cement degradation and iron corrosion products. Proceedings of the International Conference on the Performance of Engineered Barriers: Backfill, Plugs and Seals, German Geological Survey, BGR, pp. 161-166.Google Scholar
Cuevas, J., Samper, J., Turrero, M.J. & Wieczorek, K. (2014b) Impact of the geochemical evolution of bentonite barriers on repository safety functions — PEBS case 4. Proceedings of the Proceedings International Conference on the Performance of Engineered Barriers: Backfill, Plugs and Seals, German Geological Survey, BGR, pp. 35-42.Google Scholar
Cuevas, J., Ruiz, A.I., Fernández, R., Torres, E., Escribano, A., Regadio, M. & Turrero, M.J. (2016) Lime mortar-compacted bentonite-magnetite interfaces: an experimental study focused to the understanding of the EBS long-term performance for high-level nuclear waste isolation DGR concept. Applied Clay Science, 124125, 79-93.Google Scholar
Dauzeres, A., Le Bescop, P., Cau-Dit-Coumes, C., Brunet, E., Bourbon, X., Timonen, J., Voutilainen, M., Chomat, L. & Sardini, P. (2014) On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure. Cement and Concrete Research, 58, 7688.10.1016/j.cemconres.2014.01.010CrossRefGoogle Scholar
Dauzeres, A., Le Bescop, P., Sardini, P. & Cau Dit Coumes, C. (2010) Physico-chemical investigation of clayey/ cement-based materials interaction in the context of geological waste disposal: Experimental approach and results. Cement and Concrete Research, 40, 13271340.10.1016/j.cemconres.2010.03.015Google Scholar
de Jong, B.H.W.S., van Hoek, J., Veeman, W.S. & Manson, D.V. (1987) X-ray diffraction and 29Si magic-angle-spinning NMR of opals: Incoherent long- and short-range order in opal-CT. American Mineralogist, 72, 11951203.Google Scholar
Diamond, S., White, J.L. & Dolch, W.L. (1963) Transformation of clay minerals by calcium hydroxide attack. Proceedings of the 12th National Conference, Atlanta, Georgia, USA. Clays and Clay Minerals, 12, 359379.10.1346/CCMN.1963.0120134CrossRefGoogle Scholar
Fernández, A.M., Baeyens, B., Bradbury, M. & Rivas, P. (2004) Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier. Physics and Chemistry of the Earth, 29, 105118.10.1016/j.pce.2003.12.001CrossRefGoogle Scholar
Fernández, R., Cuevas, J., Sánchez, L., Vigil de la Villa, R. & Leguey, S. (2006) Reactivity of the cement-bentonite interface with alkaline solutions using transport cells. Applied Geochemistry, 21, 977992.10.1016/j.apgeochem.2006.02.016Google Scholar
Fernández, R., González, L., Ruiz, A.I. & Cuevas, J. (2014a) Nature of C-(A)-S-H phases formed in the reaction bentonite/portlandite. Journal of Geochemistry, 2014, 18.CrossRefGoogle Scholar
Fernández, R., Rodríguez, M., Vigil de la Villa, R. & Cuevas, J. (2010) Geochemical constraints on the stability of zeolites and C-S-H in the high pH reaction of bentonite. Geochimica et Cosmochimica Acta, 74, 890906.10.1016/j.gca.2009.10.042CrossRefGoogle Scholar
Fernández, R., Ruiz, A.I. & Cuevas, J. (2014b) The role of smectite composition on the hyperalkaline alteration of bentonite. Applied Clay Science, 95, 8394.10.1016/j.clay.2014.03.015CrossRefGoogle Scholar
Gaucher, E.C. & Blanc, P. (2006) Cement/clay interactions — a review: Experiments, natural analogues, and modeling. Waste Management, 26, 776788.10.1016/j.wasman.2006.01.027CrossRefGoogle ScholarPubMed
Grandia, F., Galíndez, J.-M., Molinero, J. & Arcos, D. (2010) Evaluation of low-pH cement degradation in tunnel plugs and bottom plate systems in the frame of SR-Site. SKB Technical Report TR-10-62, 49 pp.Google Scholar
Henmi, C. & Kusachi, I. (1992) Clinotobermorite, Ca5Si6(O,OH)18-5H2O, a new mineral from Fuka, Okayama prefecture, Japan. Mineralogical Magazine, 56, 353358.10.1180/minmag.1992.056.384.07CrossRefGoogle Scholar
Jackson, M.D., Chae, S.R., Mulcahy, S.R., Meral, C., Taylor, R., Li, P., Emwas, A.-H., Moon, J., Yoon, S., Vola, G., Wenk, H.-R. & Monteiro, P.J.M. (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist, 98, 16691687.10.2138/am.2013.4484CrossRefGoogle Scholar
Jenni, A., Mäder, U., Lerouge, C., Gaboreau, S. & Schwyn, B. (2014) In situ interaction between different concretes and Opalinus Clay. Physics and Chemistry of the Earth, Parts A/B/C, 70-71, 7183.10.1016/j.pce.2013.11.004Google Scholar
Komarneni, S., Breval, E., Miyake, M. & Roy, R. (1987) Cation-exchange properties of (Al+Na)-substituted synthetic tobermorites. Clays and Clay Minerals, 35, 385390.10.1346/CCMN.1987.0350509CrossRefGoogle Scholar
Kulik, D.A. (2011) Improving the structural consistency of C-S-H solid solution thermodynamic models. Cement and Concrete Research, 41, 47795.10.1016/j.cemconres.2011.01.012Google Scholar
Lippmaa, E., Maegi, M., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1980) Structural studies of silicates by solid-state high-resolution silicon-29 NMR. Journal of the American Chemical Society, 102, 48894893.10.1021/ja00535a008Google Scholar
Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E. & Gaucher, E.C. (2009) Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. Journal of Hydrology, 364, 5872.10.1016/j.jhydrol.2008.10.013Google Scholar
Merlino, S., Bonaccorsi, E. & Armbruster, T. (1999) Tobermorites: Their real structure and order-disorder (OD) character. American Mineralogist, 84, 16131621.10.2138/am-1999-1015Google Scholar
Nonat, A. (2004) The structure and stoichiometry of C-S-H. Cement and Concrete Research, 34, 15211528.10.1016/j.cemconres.2004.04.035Google Scholar
Pardal, X., Pochard, I. & Nonat, A. (2009) Experimental study of Si—Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cement and Concrete Research, 39, 637643.10.1016/j.cemconres.2009.05.001Google Scholar
Pomakhina, E., Deneele, D., Gaillot, A.-C., Paris, M. & Ouvrard, G. (2012) 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite. Cement and Concrete Research, 42, 626632.10.1016/j.cemconres.2012.01.008Google Scholar
Rao, S. & Rajasekaran, G. (1996) Reaction products formed in lime-stabilized marine clays. Journal of Geotechnical Engineering, 122, 329336.10.1061/(ASCE)0733-9410(1996)122:5(329)CrossRefGoogle Scholar
Richardson, I.G., Brough, A.R., Brydson, R., Groves, G.W. & Dobson, C.M. (1993) Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. Journal of the American Ceramic Society, 76, 22852288.10.1111/j.1151-2916.1993.tb07765.xCrossRefGoogle Scholar
Roosz, C., Grangeon, S., Blanc, P., Montouillout, V., Lothenbach, B., Henocq, P., Giffaut, E., Vieillard, P. & Gaboreau, S. (2015) Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si phyllosilicates. Cement and Concrete Research, 73, 228237.10.1016/j.cemconres.2015.03.014Google Scholar
Russias, J., Frizon, F., Cau-Dit-Coumes, C., Malchere, A., Douillard, T. & Joussot-Dubien, C. (2008) Incorporation of aluminum into C-S-H structures: From synthesis to nanostructural characterization. Journal of the American Ceramic Society, 91, 23372342.10.1111/j.1551-2916.2008.02450.xGoogle Scholar
Samper, F.J., Montenegro, L., Turrero, M.J., Martín, P.L.P., Garralón, A., Cuevas, J. & Fernández, R. (2010) Technical Note 1: Design of new experiments. Pp. 10. PEBS Internal Deliverable D 3.4.2.Google Scholar
Sánchez, L., Cuevas, J., Ramírez, S., Ruiz de León, D., Fernández, R., Vigil de la Villa, R. & Leguey, S. (2006) Reaction kinetics of FEBEX bentonite in hyperalka-line conditions resembling the cement-bentonite interface. Applied Clay Science, 33, 125141.10.1016/j.clay.2006.04.008Google Scholar
Savage, D., Soler, J.M., Yamaguchi, K., Walker, C., Honda, A., Inagaki, M., Watson, C., Wilson, J., Benbow, S., Gaus, I. & Rueedi, J. (2011) A comparative study of the modelling of cement hydration and cement—rock laboratory experiments. Applied Geochemistry, 26, 11381152.10.1016/j.apgeochem.2011.04.004Google Scholar
Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C. & Takase, H. (2007) Alteration of bentonite by hyper-alkaline fluids: A review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/ B/C, 32, 287297.10.1016/j.pce.2005.08.048CrossRefGoogle Scholar
Soler, J.M. (2013) Reactive transport modeling of concrete-clay interaction during 15 years at the Tournemire Underground Rock Laboratory. European Journal of Mineralogy, 25, 639654.10.1127/0935-1221/2013/0025-2324Google Scholar
Soler, J.M. & Mäder, U.K. (2010) Cement-rock interaction: Infiltration of a high-pH solution into a fractured granite core. Geologica Acta, 8, 221233.Google Scholar
Sun, G.K., Young, J.F. & Kirkpatrick, R.J. (2006) The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cement and Concrete Research, 36, 1829.10.1016/j.cemconres.2005.03.002Google Scholar
Thompson, J.G. (1984) 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals. Clay Minerals, 19, 229236.10.1180/claymin.1984.019.2.09CrossRefGoogle Scholar
Torres, E., Escribano, A., Turrero, M.J., Martín, P.L.P., Peña, J. & Villar, M.V. (2009) Temporal evolution of the concrete-bentonite system under repository conditions. Proceedings of the Materials Research Society Symposium Proceedings, Boston, Massachusetts, USA, pp. 295300.Google Scholar
Torres, E., Turrero, M.J., Escribano, A., Fernández, R., Ruiz, A.I. & Cuevas, J. (2014) Temporal evolution of the Fe/ FEBEX bentonite system under simultaneous hydration and heating - results up to seven years. Proceedings of the International Conference on the Performance of Engineered Barriers: Backfill, Plugs and Seals, 2014, German Geological Survey, BGR, pp. 153-160.Google Scholar
Turrero, M.J., Villar, M.V., Torres, E., Escribano, A., Cuevas, J., Fernández, R., Ruiz, A.I., Vigil de la Villa, R. & de Soto, I.S. (2011) Laboratory tests at the interfaces: First results on the dismantling of tests FB3 and HB4. Pp. 64. PEBS Deliverable D2.3-3-1.Google Scholar
U.S. Deparment of Energy (2014) Evaluation of options for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. Pp. 89. Used Fuel Disposition Campaign, Revision 1. SAND2014-0187P, Sandia National Laboratories. FCRD-UFD-2013-000371.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift fur Kristallographie, 219, 519527.Google Scholar
Villar, M.V., Pérez del Villar, L., Martín, P.L.P., Pelayo, M., Fernández, A.M.A., Garralón, A., Cuevas, J., Leguey, S., Caballero, E., Huertas, F.J., Jiménez de Cisneros, C., Linares, J., Reyes, E., Delgado, A., Fernández-Soler, J.M. & Astudillo, J. (2006) The study of Spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress. Journal of Iberian Geology, 32, 1536.Google Scholar