Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:09:23.345Z Has data issue: false hasContentIssue false

Genesis of the Tirschenreuth kaolin deposit in Germany compared with the Kohdachi kaolin deposit in Japan

Published online by Cambridge University Press:  09 July 2018

R. Kitagawa
Affiliation:
Faculty of Sciences, Hiroshima University, Japan
H. M. Köster
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technische Universität München, Germany

Abstract

The mineralogical and geochemical characteristics of the Tirschenreuth and Kohdachi kaolin deposits, which both occur in granite, are compared and the genesis of the deposits discussed. The Tirschenreuth deposit (Rappauf pit) is considered to have formed by weathering because: (i) the kaolinite has formed by the alteration of plagioclase and biotite, whereas microcline and muscovite are unaltered; (ii) the kaolin body has a very homogeneous composition and alteration zones cannot be recognized; (iii) there has been no addition of trace elements from sources other than plagioclase and biotite in the parent rock; (iv) particle-size distribution shows that the kaolinite crystals grew under uniform physical conditions; (v) quartz grains have smooth surfaces.

The Kohdachi deposit contains many clay veins and three alteration zones: (i) halloysite with weak silicification; (ii) halloysite-kaolinite; (iii) kaolinite. Many large dissolution pits were observed by SEM on the surface of quartz crystals from the kaolin zone. Silicification, precipitation of goethite at the border of zones (ii) and (iii), and dissolution of quartz in different areas of the deposit indicate a variable pH within a distance of <100 m. The Cu and Li contents in the <2 µm fractions of the Kohdachi kaolin samples are markedly higher than those at Tirschenreuth. From hydrogen isotopic analysis, the formation temperature of the Kohdachi kaolinite may be roughly estimated at 70–150°C. It is suggested that the Kohdachi deposit formed by hydrothermal alteration.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bristow, C.M. (1968) Kaolin deposits of the United Kingdom of Great Britain and North Ireland. XXIII Int. Geol. Congr., 15, 275–288.Google Scholar
Bristow, C.M. (1977) A review of the evidence for the origin of the kaolin deposits in S.W. England. Proc. 8th Int. Kaolin Symp. Meet. Alunite, 119.Google Scholar
Bramao, L., Cady, J.G., Hendricks, S.B. & Swerlow, M. (1952) Criteria for the characterization of kaolinite, halloysite, and a related mineral in clays and soils. Soil Sci. 73, 272287.CrossRefGoogle Scholar
Churchman, G. J. & Gilkes, R. J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaoiinite in weathering profiles. Clay Miner., 24, 579–590.Google Scholar
Churchman, G.J. & Theng, B.K.G. (1984) Interactions of halloysite with amides: mineralogical factors affecting complex formation. Clay Miner., 19, 161–175.Google Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaoiinite. Clays Clay Miner., 32, 241–248.Google Scholar
Dowgiallo, E.M. (1978) A scanning electron microscope study of quartz grain surface textures from boulder clays of north and central Poland. Pp. 319328 in: Scanning Electron Microscopy in the Study of Sediments. (Whalley, W. B., editor). Geo Abstracts Ltd., Univ. East Anglia, Norwich Google Scholar
Exley, C.S. (1976) Observations on the formation of kaoiinite in the St Austell granite, Cornwall. Clay Miner., 11, 49–63.Google Scholar
Fujii, N. (1968) Genesis of the fireclay deposits in Tajimi-Toki district, Gifu Prefecture. Rep. GeoL Surv. Japan,, 230, 1A9. Google Scholar
Fujii, N. (1976) General review on kaolin clay deposits in Japan. 7th Sym. Genesis Kaolin, IGCP Tokyo,1-16. Grant, W.H. (1963) Weathering of Stone Mountain granite. Clays Clay Miner., 11, 65–73.Google Scholar
Gilkes, R.J., Scholz, G. & Dimmock, G.M. (1973) Lateritic deep weathering of granite. J. Soil Sci., 24, 523–536. Goldich, S.S. (1938) A study in rock weathering. J. Geol., 46, 17–58.CrossRefGoogle Scholar
Herwig, F.H. & Wieden, P. (1968) Kaolin deposits of Austria. XXIII fnt. GeoL Congr., 15, 25–32.Google Scholar
Hinckley, D.N. (1963) Variability in "crystallinity" values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner,, 11, 229–235.Google Scholar
Ishihara, S. (1971) Modal and chemical composition of the granitic rocks related to the major molybdenum and tungsten deposits in the inner zone of southwest Japan, J. Geol Soc. Japan, 77, 441452.Google Scholar
Iwao, S. (1968) Zonal structure in some kaolin and associated deposits of hydrothermal origin in Japan. XIII Int. Geol. Congr., 14, 71–87.Google Scholar
Iwao, S. & Udagawa, S. (1969) Pyrophyllite and "roseki" clays. Pp, 71-88 in: The Clays of Japan. .Geol. Surv. Japan.Google Scholar
Keller, W.D. (1976a) Scanning electron micrographs of kaolins collected from diverse environments of origin-I. Clays Clay Miner., 24, 107–113.Google Scholar
Keller, W.D. (1976b) Scanning electron micrographs of kaolins collected from diverse environment of origin-II. Clays Clay Miner., 24, 114–117 Google Scholar
Keller, W.D. (1967c) Scanning electron micrographs of kaolins collected from diverse environments of origin-III. Influence of parent material on flint clays and flint-like clays. Clays Clay Miner., 24, 262–264.Google Scholar
Keller, W.D. (1989) Scanning electron micrographs of clay minerals formed by weathering and other genetic processes. Pp. 2947 in: Weathering, its Products and Deposits. Vol. 1. Theophrastus Publication, SA.Google Scholar
Kinosaki, Y. (1963) The pyrophyllite deposits in the Chugoku province, West Japan. Geol. Rep. Hiroshima Univ., 12, 1–35 (in Japanese with English abstract).Google Scholar
Kitagawa, R. (1986) Clay veins and clay minerals in the granitic rocks in Hiroshima and Shimane prefectures, Southwest Japan–Effect of the hydrothermal activities on the decomposition of the granitic rocks. Geol. Rep. Hiroshima Univ., 35, 47–71.Google Scholar
Kitagawa, R. & Kakitani, S. (1977) Alteration of plagioclase in granite during weathering. J. Sci. Hiroshima Univ. Series C, no. 7, 183197.Google Scholar
Kitagawa, R. & Kakitani, S. (1978) The white clay vein in the granitic rock at the Hachihonmatsu district, Hiroshima Prefecture. J. Clay Sci. Soc. Japan, 18, 31–39 (in Japanese with English abstract).Google Scholar
Kitagawa, R. & Kameoka, H. (1986) The mode of occurrence and mineralogy of Komaki halloysite and alteration of its surrounding granitic rock. J. Clay Sci. Soc. Japan,, 26, 78–89 (in Japanese with English abstract).Google Scholar
Kitagawa, R., Nishido, H., Ito, Z. & Takeno, S. (1988) K-Ar ages of the sericite and kaolin deposits in the Chugoku district, Southwest Japan. Min. Geol., 38, 279–290.Google Scholar
Konta, J. & Koscelnik, S. (1968) PetrogTaphical types of kaolin in the Karlovy Vary granite massif. XXIII Int. Geol. Congr., 14, 79–94.Google Scholar
Konta, J. (1969) Comparison of the proofs of hydrothermal and supergene kaolinization in two areas of Europe. Proc. Int. Clay Conf. Tokyo,, 1, 281–290.Google Scholar
Köster, H.M. (1955) Beitrag zur Kenntnis indischer Laterite. Heidelbg. Beitr. Miner. Petrogr., 5, 23–64.Google Scholar
Köster, H.M. (1969) Beitrag zur Geochemie der Kaoline. Proc. Int. Clay Conf. Tokyo,, 1, 273–280.Google Scholar
Köster, H.M. (1974) Ein Beitrag zur Geochemie und Entstehung der Oberpfalzischen Kaolin- und Feldspat-Lagerstatten. Geol. Rundschau, 63, 655–689.CrossRefGoogle Scholar
Köster, H.M. (1977) A contribution to the geochemistry and genesis of the kaolin-feldspar deposits of Eastern Bavaria. Proc. 8th Int. Kaolin Symp. Meet. Alunite, 716.Google Scholar
Köster, H.M. (1979) Die Chemische Silikatanalyse. Spektralphotometrische, Komplexometrische und Flammenspektrometrischwe Analysenmethoden. Springer-Verlag, Berlin.Google Scholar
Köster, H.M. (1980) Kaolin deposits of Eastern Bavaria and the Rheinische Schiefergebirge (Rhenish Slate Mountains). Geol. Jb. D 39, 723.Google Scholar
Köster, H.M. & Tillman, H. (1975) Kaolin- und Tonvorkommen in der Oberpfalz. Der Aufschliβ, 26 (Oberpfalz), 289306.Google Scholar
Krinsley, D.H. & Donahue, J. (1968) Environmental interpretation of sand grain surface textures by electron microscopy. Bull. Geol. Soc. Am., 79, 743–748.CrossRefGoogle Scholar
Kromer, H. (1980a) Tertiary clays in the Westerwald area. Geol. Jb. D 39, 6984.Google Scholar
Kromer, H. (1980b) Tertiary clays in Northeastern Bavaria (Oberpfalz). Geol. Jb.D 39, 2545.Google Scholar
Kuroda, Y., SuzuokiT., Matsuda, S. & Kanisawa, S. (1974) D/H fractionation of coexisting biotite and hornblende in some granitic masses. J. Jap./I55. Min. Pet. Econ. Geol., 69, 95–102.Google Scholar
Lippert, H.J., Lob, F., MeislS.T., Ree, C., Salger, M., Stadler, G. & Teuscher, E.O. (1968) Kaolinlagerstatten der Bundesrepublik Deutschland. XXIII Int. Geol. Congr., 15, 85–105.Google Scholar
Marumo, K., Nagasawa, K. & Kuroda, Y. (1980) Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma geothermal area. Northeastern Japan. Earth Planetary Sci. Lett., 47, 255–262.CrossRefGoogle Scholar
Masuda, Y., Yagi, S., Mitsuji, T. & Nishimura, S. (1983) Trace element contents in the granitic rocks from southwestern Japan. (1) Chugoku district. J. Jap.^455'. Min. Pet. Econ. Geol., 78, 41–50.Google Scholar
Matsumoto, K. (1965) On some kaolin deposits related to the granite in Chugoku district. Jap. Geol. Rep. Hiroshima Univ., 14, 385–395 (in Japanese with English abstract).Google Scholar
Matsumoto, K. (1968) On the geology and pyrophyllite deposits of the Yanoshokozan mine, Hiroshima Prefecture. Geol. Rep. Hiroshima Univ., 16, 1–25 (in Japanese with English abstract).Google Scholar
Minato, H. (1969) Mica clay minerals. Pp. 95-102 in: The Clays of Japan. Geol. Surv., Japan.Google Scholar
Minato, H. (1976) Mineralogy and genesis of hydrothermal kaolin in Japan. 7th Sym. Genesis Kaolin, IGCP, Tokyo, 1731.Google Scholar
Murray, H.H. (1988) Kaolin minerals: Their genesis and occurrences. Pp. 6789 in: Hydrous Phyllosilicates (Exclusive of Micas).(Bailey, S. W., editor). Reviews in Mineralogy, 19. Min. Soc. Am., Washington, DC.CrossRefGoogle Scholar
Murray, H.H., Partridge, P. & Post, J.L. (1978) Alteration of a granite to kaolin-mineralogy and geochemistry. Schriftenr. geol. Wiss Berlin, 11, 197–208.Google Scholar
Nagasawa, K. (1978) Kaolin minerals. Pp. 189219 in: Clays and Clay Minerals of Japan.(Sudo, T. & Shimoda, S., editors) Developments in Sedimentology, 26, Elsevier, Amsterdam.Google Scholar
Nagasawa, K. & Kunieda, K. (1970) Geology and mineralogy of clay deposits in the Naegi district, Gifu Prefecture. Min. Geol. (Japan), 20, 361–377.Google Scholar
Nagasawa, K., Takeshi, H., Fujii, N. & HachisukaE. (1969) Occurrence, properties and uses of the clays and allied minerals in Japan. I. Kaolin mineral. Pp. 1770 in: The Clays of Japan.Geol. Surv., Japan.Google Scholar
Pant, R.K., Agrawal, D.P. & Krishnamurthy, R.V. (1978) Scanning electron microscope and other studies on the Karewa bewds of Kashmir, India. Pp. 275-282 in: Scanning Electron Microscopy in the Study of Sediments(Whalley, W. B., editor). Geo Abstracts Ltd., Univ. East Anglia, Norwich.Google Scholar
Prost, R., Dameme, E., Huard, E., Driard, J. & Leydecker, J.P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays Clay Miner., 37, 464–468.CrossRefGoogle Scholar
Ribault, L.L. (1978) The exoscopy of quartz sand grains. Pp. 319328 in: Scanning Electron Microscopy in the Study of Sediments (Whalley, W. B., editor). Geo Abstracts Ltd., Univ. East Anglia, Norwich.Google Scholar
Sadleir, S.B. & Gilkes, R.J. (1976) Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Miner., 24, 579–590.Google Scholar
Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P. (1969) Oxygen and hydrogen isotope ratios of clays from porphyry copper deposits. Econ. Geol., 64, 755–777.Google Scholar
Shimizu, H. (1972) On kaolin minerals in Pliocene clay deposits around Nagoya city. J. Clay Sci. Soc. Japan,, 12, 1122 (in Japanese with English abstract).Google Scholar
Strobel, O. (1969) Die Kaolinlagerstätten von Tirschenreuih und ihr geoiogischer Rahmen im Vergleich zu den Lagerstätten von Weiherhammer. Diss. Tech. Univ. München, Germany.Google Scholar
Suzuoki, T. & Epstein, S. (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta,, 40, 1229–1240.CrossRefGoogle Scholar
Tanaka, M., Taninami, S. & Oya, I. (163) Fundamental studies on the Hiraki kaolin. Part I. J. Ceram. Jap., 71, 187–195 (in Japanese).Google Scholar
Terashima, S. & Ishihara, S. (1984) Copper, lead, zinc, arsenic and sulfur of the Japanese granitoids (2). Inner zone of Southwest Japan. Bull. GeoL Surv. Japan, 35, 127–145 (in Japanese with English abstract).Google Scholar
Tillmann, H. (1964) Jungtertiare Sedimente am Rand des Grundgebirges Osbayerns. Erl. Geol. Karte von Bayern 1:500000, 2. Auflage, Bayer. Geol. Landesamt, Miinchen, 195197.Google Scholar
Togashi, Y. & Fujii, N. (1972) Study on the Itaya kaolin deposit, Yamagata Prefecture, Northeastern Japan. Bull. Geol. Surv. Japan, 23, 595–612 (in Japanese with English abstract).Google Scholar
Tsuzuki, Y. (1976) Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits. Clays Clay Miner., 24, 297–302.Google Scholar
Vachtl, J. (1969) Review of kaolin deposits of Europe. XXIII Int. Geol. Congr., 15, 13–24.Google Scholar
Wilke, B.-M., Schwertmann, U. & Murad, E. (1978) An occurrence of polymorphic halloysite in granite saprolite of the Bayerischer Wald. Germany. Clay Miner., 13, 6111. CrossRefGoogle Scholar
Wilke, B.-M. & Schwertmann, U. (1977) Gibbsite and halloysite decomposition in strongly acid podzolic soils developed from granitic saprolite of the Bayerischer Wald. Geoderma,, 19, 51–56.CrossRefGoogle Scholar
Wilson, P. (1978) A scanning electron microscope examination of quartz grain surface textures from the weathered Millstone Grit (Carboniferous) of the Southern Pennines, England. A preliminary report. Pp. 319328 in; Scanning Electron Microscopy in the Study of Sediments(Whalley, W. B., editor). Geo Abstracts Ltd., Univ. East Anglia, Norwich.Google Scholar
Zeuner, F.E. (1950) Stone age and Pleistocene chronology in Gujarat. Poona 1950.Google Scholar
Zheng, Z. & Luwaugh, B. (1981) Diagenesis in continental red beds as revealed by scanning electron microscopy. Proc. Int. Clay Conf. Bologna-Pavia, 719731 Google Scholar