Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:17:10.389Z Has data issue: false hasContentIssue false

Influence of Geological Material in the Composition of Surface Waters of Galicia (Nw Spain). Genesis of Clay Minerals

Published online by Cambridge University Press:  09 July 2018

R. Calvo De Anta
Affiliation:
Departamento de Edafologia, Universidad de Santiago de Compostela, Spain
F. Macias
Affiliation:
Departamento de Edafologia, Universidad de Santiago de Compostela, Spain

Abstract

The composition of fluvial waters can be used to predict the processes of formation and evolution of secondary minerals in Galician soils. These processes are similar in areas with different rocks, from acid to basic, the only exception being strongly serpentinized materials. In general, the nature of the rock has less influence than the characteristics of the alteration system, which is always open, acid and freely draining. Mineral neoformation is always of the monosialitic type, having different degrees of evolution. The incipient phases tend to form gibbsite as a more stable mineral, and halloysite, allophanes and imogolite as metastable forms. With time, a crystalline kaolinite would be the only stable species. These results agree with the mineralogy and the andic or ferralic properties of the soils.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, E., Garcia-Rodeja, E. & Calvo de Anta, R. (1992) Parent soil material and toxic species of A1 in acid soils of Galicia. Fresenius Environmental Bull. 1, 553558.Google Scholar
Aurousseau, P., Bourrie, G. & Curmi, P. (1987) Organisation mineralogie et dynamique de 1’aluminium dans les sols acides et podzoliques en dimat temperēe et oceanique. Pp. 85-105 in: Podzols and Podzolization (Righi & Chauvel, editors). AFES-INRA, Rennes.Google Scholar
Bourrie, G., Grimaldi, C. & Regeard, A. (1989) Monomeric versus mixed monomeric-polymeric models for aqueous aluminium species: Constraints from low-temperature natural waters in equilibrium with gibbsite under temperate and tropical climate. Chem. Geol. 76, 403117.CrossRefGoogle Scholar
Busenberg, E. (1978) The products of the interaction of feldspars with aqueous solutions at 25°C. Geochim. Cosmochim. Acta 42, 16791686.Google Scholar
Calvo de Anta, R., Fernandez, L. & Veiga, A. (1987a) Composicion de la solution del suelo en medios naturales de Galicia. An. Edaf. Agrobiol. 46, 621641.Google Scholar
Calvo de Anta, R.,Fernandez, L. & Veiga A . (1987b) Establidad mineral de suelos desarrollados a partir de rocas bāsicas y ultrabāsicas de Galicia. An Edaf. Agrobiol. 46, 643665.Google Scholar
Calvo de Anta, R.M., Macias, F. & Buurman, P. (1987c) Procesos de alteration y neoformacion mineral en medios serpentmicos de Galica. Cuad. Laboratorio Xeoloxico de Laxe, 11, 161170.Google Scholar
Dougan, W.K. & Wilson, A.L. (1974) The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and development of an improved method. Analyst, 99, 413—430.Google Scholar
F.A.O. (1990) Mapa Mundial de Suelos. Leyenda Revisada. Informes sobre Recursos Mundiales de Suelos 60, 142pp.Google Scholar
Fernandez, L. & Macias, F. (1989) Neoformacion de minerales de la arcilla en la Espana peninsular: tendencias termodināmicas basadas en la composicion de las aguas de los rios espanoles. Cuad. Lab. Xeoloxico de Laxe, 14, 1928.Google Scholar
Garcia Paz, C., Macias, F. & Diaz-Fierros, F. (1977) Relation entre la composicion qufmica de las aguas superficiales y la mineralogfa de los suelos de Galicia. Acta Cientifica Compostelana, 14, 337363.Google Scholar
Garcia-Rodeja, E., Silva, B., Macias, F. (1987) Andosols developed from non-volcanic materials in Galicia, NW Spain. J. Soil Sci. 38, 573591.Google Scholar
Hem, J.D. & Roberson, C.E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution. U.S. Geol. Surv., Water-Supply Pap. 1827 A, 55pp.Google Scholar
Kharaka, Y., Gunter, W., Aggarwal, P., Perkins, E. & Debraal, J. (1989) Solmineq.88: A Computer Program for Geochemical Modelling of Water-rock Interactions. U.S. Geol. Surv. Menlo Park, California, 419 pp.Google Scholar
Kittrick, J.A. (1966) Free energy of formation of kaolinite from solubility measurements. Am. Miner. 51, 14571466.Google Scholar
Macias, F., Puga, M. & Guitian, F. (1978) Caracteres andicos de suelos sobre gabros de Galicia (NW de Espana). An. Edaf. Agrobiol. 37, 187203.Google Scholar
Macias, F. (1981) Formation of gibbsite in soils and saprolites at temperate humid zones. Clay Miner. 16, 4352.Google Scholar
Macias, F., Calvo de Anta, R., Garcia, P., Garcia-Rodeja, E. & Silva, B. (1982) El material original: su formation e influencia en las propiedades de los suelos de Galicia. An Edaf. Agrobiol., 41, 17471786.Google Scholar
May, H.M., Helmke, P.A. & Jackson, M.L. (1979) Gibbsite solubility and thermodynamic properties of hydroxy- aluminium ions in aqueous solution at 25°C. Geochim. Cosmochim. Acta 43, 861868.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992a) Evidence by transmission electron microscopy of weathering microsystems in soils developed from crystalline rocks. Clay Miner. 27, 2133.CrossRefGoogle Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992b) Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy. Clay Miner. 27, 3516.Google Scholar
Sarazin, (1979) Geochimie de I’aluminium au corns de Valteration des granites et des basaltes sous climat tempere. PhD thesis, Univ. Paris VII, France.Google Scholar
Sposito, G. (1985) Chemical models of weathering in soils. Pp. 1-18 in: The Chemistry of Weathering (J.I. Drever, editor). Nato Advanced Study Inst., Ser. C.Google Scholar
USDA (1990) Keys to Soil Taxonomy, fourth edition. SMSS Technical Monograph 6, Blacksburg, Virginia.Google Scholar