Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T13:52:57.626Z Has data issue: false hasContentIssue false

Origin and evolution of smectites in Recent marine sediments of the NE Atlantic

Published online by Cambridge University Press:  09 July 2018

M. Parra
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France
P. Delmont
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France
A. Ferragne
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France
C. Latouche
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France
J. C. Pons
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France
C. Puechmaille
Affiliation:
Centre de Recherches sur l'Environnement Sédimentaire et Structural des Domaines Marins, LA CNRS no 197, Université de Bordeaux I, 351 Cours de la Libération, Talence, France

Abstract

Present-day marine sediments around the emerged basaltic areas of Iceland and the Faeroe Islands are characterized by the abundance and predominance of smectites. Smectites increase regularly and systematically near volcanic areas. Their origin from (i) meteoric/deuteric weathering, (ii) hydrothermal products, (iii) neoformation in the marine environment or (iv) transformation during their transport to or stay in oceanic regions is considered in a comparative study of three types of environments on or near the Faeroe Islands. These are (1) a basaltic environment where phyllite minerals of deuteric and hydrothermal origin are abundant; (2) a soil environment formed on basaltic flows; (3) a marine sedimentary environment within adjacent sedimentary basins. This investigation clearly shows the link between hydrothermal and deuteric saponite-celadonite in basalt, Fe,Mg-smectite in Faeroe soils and Fe-smectite in marine sediments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.C. (1983) Chemistry of alteration minerals from Deep Sea Drilling Project-—Sites 501, 504, and 505. Int. Repts. DSDP 59, 551563.Google Scholar
Biermans, V. & Baert, L. (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline tiron solution. Clay Miner. 12, 127135.CrossRefGoogle Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas. Geol. Soc. Am. Bull. 76, 803832.Google Scholar
Courbe, C., Velde, B. & Meunier, A. (1981) Weathering of glauconites: reversal of the glauconitication process in a soil profile in western France. Clay Miner. 16, 231243.Google Scholar
Curtin, D. & Smille, G.W. (1981) Composition and origin of smectite in soils derived from basalt in Northern Ireland. Clays Clay Miner. 29, 277284.CrossRefGoogle Scholar
Desprairies, A. (1983) Relation entre le paramètre b des smectites et leur contenu en fer et magnésium. Application à l'étude des sédiments. Clay Miner. 18, 165175.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V. C., editor). Mineralogical Society, London.Google Scholar
Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L. & Rimsaite, J.Y.M. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral Mag. 38, 121137.Google Scholar
Griffin, J.J., Windson, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the world ocean. Deep Sea Res. 15, 433459.Google Scholar
Grousset, F. (1983) Sédimentogé;nèse d'un environnement de dorsale; la ride Açores-Islande au cours du dernier cycle climatique. Origines, vecteurs, flux de particules sédimentaires. Thèse d'Etat, Univ. Bordeaux I, 233 pp.Google Scholar
Groussex, F., Latouche, C. & Parra, M. (1982) Later Quaternary sedimentation between the Gibbs Fracture and the Greenland Basin: mineralogical and geochemical data. Marine Geol. 47, 303330.Google Scholar
Haggerty, S.E. & Baker, I. (1967) The alteration of olivine in basaltic and associated lavas. Part II: intermediate and low temperature alteration. Contr. Miner. Petrol., 16, 258273.Google Scholar
Hetier, J.M. (1975) Formation et évolution des andosols en climat tempéré. Thèse d'Etat, Univ. Nancy, 194 PP.Google Scholar
Hoffert, M. (1980) Les argiles rouges des “grands fonds” dans le Pacifique centre-est. Authigénèse, transport, diagénèse. Thèse d'Etat, Univ. Strasbourg, 206 pp.Google Scholar
Honnorez, J., Lavergne, C., Hubberten, H.W., Emmermann, R. & Muehlenbachs, K. (1983) Alteration processes in layer 2 basalts from Deep Sea Drilling Project, Hole 504 B, Costa Rica. Rift. Init. Repts. DSDP 59, 509546.Google Scholar
Ildefonse, P. (1983) Altérations prémétéoriques et altération météoriques des olivines du basalte de Belbex (Cantal, France). Coll. Int. CNRS, Science Géologiques 72, II, 6979.Google Scholar
Jensen, A. (1980) Mineralogical and geochemical variations across three basaltic lava flows from the Faeroe Islands. Bull. Geol. Soc. Denmark 28, 89114.Google Scholar
Kristmannsdottir, H. (1978) Zeolite zones in geothermal areas in Iceland. Pp. 277284 in: Natural Zeolites; Occurrences, Properties, Use (Sand, L.B. & Mumpton, F.A., editors). Pergamon Press, London & New York.Google Scholar
Latouche, C. (1975) Les minéraux argileux des sédiments actuels de l'Atlantique nord-orientel et du sud de la mer de Norvège. Proc. Int. Clay Confe. Mexico City, 4554.Google Scholar
Mevel, C. (1980) Mineralogy and chemistry of secondary phases in low temperature altered basalts from DSDP tegs 51, 52. Init. Repts. DSDP, 51, 52, 53, 12991317.Google Scholar
Odin, G.S. (1975) Les glauconies: constitution, formation, âge. Thèse d'Etat, Univ. Pierre et Marie Curie, Paris, 250 pp.Google Scholar
Parra, M. (1980) Apport des données minéralogiques et géochimiques à la connaissance de la sédimentation profonde et de l'hydrologie de l'océan Nord-Atlantique pendant le Quaternaire terminal. (Dernier glaciaire et post-glaciaire). Thèse d'Etat, Univ. Bordeaux I, 223 pp.Google Scholar
Parra, M. (1982) North Atlantic sedimentation and Paleohydrology during the late Quaternary. Mineralogical atad Geochemical data. Oceanol. Acta 5, 241248.Google Scholar
Pedro, G. (1966) Essai sur la caractérisation géochimique des différents processus zonaux de l'altération des roches superficielles (cycle alumino-silicique). C.R. Acad. Sci. Paris 262, 18281831.Google Scholar
Quakernaat, J. (1970) A new occurrence of a macrocrystalline form of saponite. Clay Miner. 8, 491493.Google Scholar
Rasmussen, J. & Noe-Nygaard, A. (1970) Geology of the Faeroe Islands. Mem. Geol. Surv. Denmark, Ser. I 25, 142 pp.Google Scholar
Rateev, M.A., Gorbunova, Z.N., Lisitzyn, A.P. & Nosov, G.L. (1969) The distribution of clay minerals in the oceans. Sedimentology 13, 2143.Google Scholar
Robert, M. (1970) Etude expérimentale de la déségrégation du granite et de l'évolution des micas. Thèse d'Etat, Univ. of Paris, 195 pp.Google Scholar
Russell, J.D. & Farmer, V.C. (1970) Replacement of organic matter by organic dilution in layer silicates, and identification of the vibrations of these groups by infrared spectra. Mineral. Mag. 37, 869879.Google Scholar
Rutherford, G.K. & Debenham, P.L. (1981) The mineralogical composition of some silt and clay fractions from soils on the Faeroe Islands. Soil Sci. 132, 288299.Google Scholar
Sabine, P.A. (1971) Bentonitic beide[lite-mudstone from the Faeroe Islands. Clay Miner. 9, 97106.Google Scholar
Walker, G.P.L. (1960) Zeolite zones and dike distribution in relation to the structure of the basalts in eastern Iceland. J. Geol. 68, 515528.Google Scholar
Walters, S.G. & Ineson, P.R. (1983) Clay minerals in the basalts of the South Pennines. Mineral. Mag. 47, 2126.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier Scientific Publishing Co., Amsterdam, 213 pp.Google Scholar
Wise, W.S. & Eugster, H.P. (1964) Celadonite: synthesis, thermal stability and occurrence. Am. Miner. 49, 10311083.Google Scholar
Yeroshchev-Shak, V.A. (1964) Clay minerals of the Atlantic Ocean. Soviet Oceanogr. 30, 90105.Google Scholar
Zimmerman, H.B. (1975) Patterns of fine sediment dispersal in North Atlantic Ocean. Proc. IXth Int. Congr. Sedim. Nice 8, 7782.Google Scholar
Zimmerman, H.B. (1982) Fine grained sediment distribution in the late Pleistocene, Holocene North Atlantic. Bull. Inst. Geol. Bassin Aquitaine 31, 337357.Google Scholar