Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T08:42:23.811Z Has data issue: false hasContentIssue false

The Octahedral Layer

Published online by Cambridge University Press:  01 January 2024

M. C. Gastuche*
Affiliation:
University of Louvain, Héverlé-Louvain, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the first part of this paper the formation processes of pure octahedral hydroxides are investigated. Conditions of synthesis of aluminum, magnesium, iron and mixed Al-Mg, Al-Ca, Al-Fe systems are successively reviewed. In every case crystal growth in deionized medium allows one to figure out genetic conditions.

The second part deals with the conditions required for the development of the octahedral layer in the presence of silica, i.e. the clay mineral synthesis. Experimental conditions remain always as nearly as possible to those observed naturally.

Trioctahedral minerals are rather easily obtained at ordinary temperature and pressure. The evolution of the magnesium-silica system is described. Synthesis of dioctahedral layer lattices, such as those of the kaolin minerals, appears more difficult to perform under the same conditions. Initial organization of the starting materials plays an important role in this case and procedures are described.

Finally, interactions of octahedral and silica layers are studied. The study of infrared spectra in the 9–11μ region permits such observations. Characteristic changes in the spectral region of Si-O stretching allows one either to follow the octahedral destruction (by acid attack or dehydroxylation) or the octahedral layer formation in kaolinite synthesis.

Type
General
Copyright
Copyright © The Clay Minerals Society 1963

References

Basolo, F., and Pearson, R. G. (1958) Mechanism of Inorganic Reactions: Wiley, New York.Google Scholar
Brindley, G. W., and De Kimpe, C. (1961) Attempted low temperature synthesis of kaolin minerals: Nature, v. 190, p. 254.CrossRefGoogle Scholar
Calvet, E., Boivinet, P., Noël, M., Thibon, H., Maillard, A., and Tertian, R. (1953) Bull. Soc. Shim. France, pp. 99108.Google Scholar
De Flandre, A. (1963) Etude de l’évolution des gels de fer et d'aluminium et des gels mixtes en milieu dialysé: Mémoire, Université Catholique de Louvain.Google Scholar
De Kimpe, C., Gastuche, M. C., and Brindley, G. W. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation: Amer. Min., v. 46, pp. 13701381.Google Scholar
De Kimpe, C., Gastuche, M. C., and Brindley, G. W. (1963) Low temperature synthesis of kaolin minerals: Amer. Min. (to be published).Google Scholar
Delfosse, J. C. (1963) Réalisation d'un tonomètre et application des mesures tono- métriques aux électroytes mixtes et aux suspensions colloïdales: Mémoire, Université Catholique de Louvain.Google Scholar
Feitchnecht, W. (1942) Uber die Bildung von Doppelhydroxyde Zwischen Zwei und dreiwertigen metallen: Helvetica Chem. Acta, v. 25, pp. 555569.CrossRefGoogle Scholar
Feitchnecht, W., and Gerber, M. (1942) Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze. III über magnesium-aluminum doppelhydroxyde: Helvetica Chem. Acta, v. 25, pp. 131137.Google Scholar
Frondel, S. (1941) Constitution and polymorphism of pyroaurite and sjögrenite groups: Amer. Min., v. 26, pp. 295315.Google Scholar
Gastuche, M. C., and De Kimpe, C. (1959) Tentative de synthèse des argiles du groupe du kaolin dans les conditions normales de température et de pression: Acad. Roy. Belg. Bull. Cl. Sci., v. 45, pp. 10871104.Google Scholar
Gastuche, M. C., and Herbillon, A. (1962) Etude des gels d'alumine. Cristallisation en milieu désionisé: Bull. Soc. Chim. France, pp. 14041412.Google Scholar
Gastuche, M. C., and Fripiat, J. J. (1962) Acid dissolution techniques applied to determination of the structure of clays and controlled by physical methods: Science of Ceramics, ed. J. H. Stewart, Academic Press, London, pp. 121138.Google Scholar
Gastuche, M. C., Fripiat, J. J., and De Kimpe, C. (1962) La genèse des minéraux argileux de la famille du kaolin. I. Aspect colloïdal. Coll. Int. du C.N.R.S. Genèse et Synthèse des Argiles, Paris, pp. 5765.Google Scholar
Gastuche, M. C., and De Kimpe, C. (1962) La genèse des minéraux argileux de la famille du kaolin. II. Aspect cristallin: Coll. Int. du C.N.R.S. Genèse et Synthèse des Argiles, Paris, pp. 6781.Google Scholar
Gastuche, M. C., Bruggenwert, T., and Mortland, M. M. (1964) Crystallization of mixed iron and aluminum gels: Soil Sci. (to be published).Google Scholar
Gastuche, M. C., Fripiat, J. J., and Sokolsky, S. (1963) Fixation du phosphore par les hydroxides de fer et d'aluminium amorphes et cristallisés: Pédologie (to be published).Google Scholar
Hénin, S., and Caillère, S. (1961) Vue d'ensemble sur le problème de la synthèse des minéraux phylliteux à basse température: Coll. Int. du C.N.R.S. Genèse et Synthèse des Argiles, Paris, pp. 3143.Google Scholar
Herbillon, A., and Gastuche, M. C. (1962) Synthèse et Genèse de l'Hydrargillite: Compte- Rendus, Paris., v. 254, pp. 11051107.Google Scholar
Herbillon, A., and Gastuche, M. C. (1962) Etude des complexes kaolinite-hydroxide d'aluminium. Synthèse et Genèse des trihydrates cristallisés: Bull. Group Fr. des Argiles, v. 14, pp. 7794.CrossRefGoogle Scholar
Longuet-Escard, J. (1951) Sur un aluminate de nickel hydraté: Mem. Serv. Chim. de l'Etat, v. 2, pp. 187193.Google Scholar
Richards, L. A., and Ogata, G. (1958) Thermocouple for vapour pressure measurements in soil systems at high humidity: Science., v. 128, No. 3331, pp. 10891090.CrossRefGoogle ScholarPubMed
Tiiley, L. A., Megaw, H. D., and Hey, M. H. (1934) Hydrocalumnite (4 CaO, Aa2O3, 12H2O), a new mineral from Scawt Hill Co., Antrim: Min. Mag. and Jour. of the Min. Soc., v. XXIII, No. 147.Google Scholar