Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T09:05:20.181Z Has data issue: false hasContentIssue false

Effects of Chemical Structure on the Stability of Smectites in Short-Term Alteration Experiments

Published online by Cambridge University Press:  01 January 2024

Lan Nguyen-Thanh*
Affiliation:
Technical Petrology, Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany Institute of Geography and Geology, Ernst-Moritz-Arndt-University of Greifswald, Friedr.-Ludwig-Jahn-Str. 16, 17487, Greifswald, Germany
Horst-Jürgen Herbert
Affiliation:
Gesellschaft für Anlagen- und Reaktorsicherheit mbH, Theodor-Heuss-Str. 4, 38122, Braunschweig, Germany
Jörn Kasbohm
Affiliation:
Institute of Geography and Geology, Ernst-Moritz-Arndt-University of Greifswald, Friedr.-Ludwig-Jahn-Str. 16, 17487, Greifswald, Germany
Thao Hoang-Minh
Affiliation:
VNU University of Science, 334 Nguyen Trai road, Thanh Xuan district, Hanoi, Vietnam
Rafael Ferreiro Mählmann
Affiliation:
Technical Petrology, Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany
*
* E-mail address of corresponding author: nguyen@geo.tu-darmstadt.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of their isolating capacity, smectite-rich clays have been proposed as buffer and backfill materials in high-level radioactive waste repositories. These repositories have to guarantee long-term safety for ~1 million years. Thermodynamics and kinetics of possible alteration processes of bentonite determine its long-term performance as a barrier material. Smectites in 25 different clays and bentonites were investigated in order to identify possible differences in their rates of alteration. These samples were saturated for 30 days in 1 M NaCl solution and deionized water, and then overhead rotated at speeds of 20 rpm and 60 rpm. Depending on the octahedral and interlayer composition, each of the smectites studied had specific rate of alteration, a so-called specific dissolution potential of smectite. The bentonites were classed as ‘slow-reacting bentonite’, ‘moderate-reacting bentonite’, or ‘fast-reacting bentonite’ corresponding to a relatively low (ΔP specific dissolution potential — <-5%), moderate (-5% < ΔP < -20%), or high specific dissolution potential (ΔP > -20%), respectively. The larger the amount of octahedral Fe and Mg compared to octahedral Al, the greater the specific dissolution potential. The present study found that the interlayer composition has a discernible impact on the rate of alteration. In experiments with rotation speeds of 60 rpm and a 1 M NaCl solution, Na+ was found to be the stabilizing cation in the interlayers of all the smectites. The Na-stabilizing mechanism was identified in only some of the smectites (type A) in experiments with 20 rpm (1 M NaCl solution). A second stabilization mechanism (by interlayer cations; Ca and Mg) was identified for other smectites (type B). Each bentonite has a specific rate of alteration. ‘Slow-reacting bentonite’ and clay with smectite-illite interstratifications are recommended as potential clay barriers in HLW repositories. The experimental and analytical procedures described here could be applied to potential barrier materials to identify ‘slow-reacting bentonite’.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Adamcova, J. Hanusova, I. Ponavic, M. Prikryl, R., Stastny, M., 2008 Alteration processes in bentonites Book of Abstracts of 18th Clay Conference in the Czech Republic 19.Google Scholar
Banin, A. and Lahav, N., 1968 Particle size and optical properties of montmorillonite in suspension Israel Journal of Chemistry 6 235250.CrossRefGoogle Scholar
Bauer, A. Schäfer, T. Dohrmann, R. Hoffmann, H. and Kim, J.I., 2001 Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution Clay Minerals 36 93103.CrossRefGoogle Scholar
Bergmann, J. Friedel, P. and Kleeberg, R., 1998 BGMN — a new fundamental parameter based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations CPD Newsletter 20 58.Google Scholar
BGR, 2007 Nuclear waste disposal in Germany: Investigation and evaluation of regions with potentially suitable host rock formations for a geologic nuclear repository Report of the Bundesanstalt für Geowissenschaften und Rohstoffe 17 pp..Google Scholar
Bildstein, O. Trotignona, L. Perronnet, M. and Jullien, M., 2006 Modelling iron-clay interactions in deep geological disposal conditions. Parts A/B/C Physics and Chemistry of the Earth 31 1014.Google Scholar
Carlson, L. Karnland, O. Oversby, M. Rance, A.P. Smart, N.R. Snellman, M. Vähänen, M. and Werme, O., 2007 Experimental studies on the interaction between anaerobically corroding iron and bentonite Physics and Chemistry of the Earth 32 334335.CrossRefGoogle Scholar
Castellanos, E. Villar, M.V. Romero, E. Lloret, A. and Gens, A., 2008 Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite Physics and Chemistry of the Earth 33 55165526.Google Scholar
Charpentier, D. Devineau, K. Mosser-Ruck, R. Chathelineau, M. and Villieras, F., 2006 Bentonite-iron interactions under alkaline condition: An experimental approach Applied Clay Science 32 113.CrossRefGoogle Scholar
Christidis, G.E., 2008 Do bentonites have contradictory characteristics? An attempt to answer unanswered questions Clay Minerals 43 515529.CrossRefGoogle Scholar
Christidis, G.E. and Makri, P., 2007.Distribution of layer charge and charge distribution of smectites in bentonite deposits: Implications for bentonite genesis Abstracts volume, Euroclay2007, Aveiro, PortugalGoogle Scholar
Christidis, G.E. Katsiki, P. Pratikakis, A. and Kacandes, G., 2010 Rheological properties of palygorskite-smectite suspensions from the Ventzia Basin, W. Macedonia, Greece Bulletin of the Geological Society of Greece 25622569.CrossRefGoogle Scholar
Čícel, B. Novak, I., Konta, J., 1977 Dissolution of smectites in hydrochloric acid. I. Half-time of dissolution as a measure of reaction rate Proceedings of the 7th Conference on Clay Mineralogy and Petrology Prague, Czechoslovakia Charles University 163171.Google Scholar
Craciun, C., 1984 Influence of the Fe3+ for Al3+ octahedral substitutions on the IR spectra of montmorillonite minerals Spectroscopy Letters 17 579590.CrossRefGoogle Scholar
Dixon, D.A. Gray, M.N. and Graham, J., 1996 Swelling and hydraulic properties of bentonites from Japan, Canada and USA Proceedings of the 2nd International Congress on Environmental Geotechnics, Osaka, Japan 58.Google Scholar
Eyal, B.D. and Singer, A., 1987 Optical density of vertisol clay suspensions in relation to sediment volumes and dithionite-citrate-bicarbonate-extractable iron Clays and Clay Minerals 35 311317.Google Scholar
Farmer, V.C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 539 pp..CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., 1964 The infrared spectra of layer silicates Spectrochimica Acta 20 11491173.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. montmoril lonite hydration properties American Mineralogist 90 13581374.CrossRefGoogle Scholar
Garrels, R.M. and Christ, C.L., 1965 Solutions, Minerals, and Equilibria London Harper 464 pp..Google Scholar
Gates, W.P., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites Vibrational Spectroscopy of Layer Silicates and Hydroxides 14 126168.Google Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5259.CrossRefGoogle Scholar
Grim, R.E. and Güven, N., 1978 Bentonites — Geology, Mineralogy, Properties and Uses Developments in Sedimentology 46 254 pp..Google Scholar
Herbert, H.J. Kasbohm, J. and Henning, K.H., 2004 Long-term behaviour of the Wyoming bentonite MX-80 in high saline solutions Applied Clay Science 26 275291.CrossRefGoogle Scholar
Herbert, H.-J. Kasbohm, J. Sprenger, H. Fernández, A.M. and Reichelt, C., 2008 Swelling pressures of MX-80 bentonite in solutions of different ionic strength Physics and Chemistry of the Earth 33 327342.CrossRefGoogle Scholar
Herbert, H.-J. Kasbohm, J. Nguyen, T.L. Meyer, L. Hoang, T.M.T. and Xie, M., 2011 Fe-bentonite - Experiments and modeling of the interactions of bentonites with iron Gessellschaft für Anlange und Reaktiosicherheit — report, No. 295, Braunschweig, Germany 302 pp..Google Scholar
Hoang-Minh, T., 2006 Characterization of Clays and Clay Minerals for Industrial Applications: Substitution of Nonnatural Additives by Clays in UV Protection PhD thesis Germany Ernst-Moritz-Arndt-University Greifswald 184 pp..Google Scholar
Honty, M. Uhlík, P. Šucha, V. Čaplovičová, M. Franců, J. Clauer, N. and Biroň, A., 2004 Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak basin) Clays and Clay Minerals 52 533551.CrossRefGoogle Scholar
Ishidera, T. Ueno, K. Kurosawa, S. and Suyama, T., 2008 Investigation of montmorillonite alteration and formation of iron corrosion products in compacted bentonite in contact with carbon steel for 10 years Physics and Chemistry of the Earth 33 269275.CrossRefGoogle Scholar
Karnland, O. Olsson, S. and Nilsson, U., 2006 Mineralogy and sealing properties of various bentonites and smectiterich clay materials Technical Report of SKB TR-06-30, SKB, Stockhlom, Sweden 112 pp..Google Scholar
Karnland, O. Olsson, S. Nilsson, U. and Sellin, P., 2007 Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions Physics and Chemistry of the Earth 32 275286.CrossRefGoogle Scholar
Kasbohm, J. Tarrah, J. Henning, K.-H., Ottner, F. and Gier, S., 2002 Transmissionselektronen-mikroskopische Untersuchungen an Feinfraktionen der Ringversuchsprobe “Ton Stoob” Beiträge zur Jahrestagung Wien, 18.-20.9. 2002. Berichte der Deutschen Ton- und Tonmineralgruppe e.V. Band 9 7184.Google Scholar
Kasbohm, J. Pusch, R. Henning, K.-H., Nüesch, R. and Emmerich, K., 2004.Short term experiments with different bentonites in saline solutions Berichte Der Dttg, Karslruhe 10Google Scholar
Kasbohm, J. Pusch, R. Nguyen-Thanh, L. and Hoang-Minh, T., 2013 Lab-scale performance of selected expandable clays under HLW repository conditions Environmental Earth Science 69 25692579.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2008 Detachment of colloidal particles from bentonites in water Applied Clay Science 39 5059.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2009 Stability of bentonites in salt solutions: I. sodium chloride Applied Clay Science 45 171177.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2010 Stability of bentonites in salt solutions: II. Potassium chloride solution — Initial step of illitization? Applied Clay Science 49 98107.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2011 Stability of bentonites in salt solutions: III. Calcium hydroxide Applied Clay Science 51 300307.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2013 The variable charge of dioctahedral clay minerals Journal of Colloid and Interface Science 390 225233.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Koch, D. and Houben, G., 2008 The pH of aqueous bentonite suspensions Clays and Clay Minerals 56 338343.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. and Klinkenberg, M., 2010 Water uptake capacity of bentonites Clays and Clay Minerals 58 3743.CrossRefGoogle Scholar
Kleeberg, R. Ufer, K. and Bergmann, J., 2010 Rietveld analysis with BGMN-Rietveld method physical basics profile modelling quantification BGMN workshop Freiberg 2010 Freiberg, Germany Technische Universität Bergakademie Freiberg. 87 pp..Google Scholar
Köster, H.M., 1977 Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenaustauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten Clay Minerals 12 4554.CrossRefGoogle Scholar
Laird, D.A., 2006 Influence of layer charge on swelling of smectites Applied Clay Science 34 7487.CrossRefGoogle Scholar
Madejová, J. and Komadel, P., 2001 Baseline studies of the Clay Minerals Society Source Clays: infrared methods Clays and Clay Minerals 49 410432.CrossRefGoogle Scholar
Madejová, J. Komadel, P. and Číčel, B., 1994 Infrared study of octahedral site populations in smectites Clay Minerals 29 319326.CrossRefGoogle Scholar
Madsen, F.T., 1998 Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129.CrossRefGoogle Scholar
Marty, N.C.M. Fritz, B. Clement, A. and Michau, N., 2010 Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository Applied Clay Science 47 8290.CrossRefGoogle Scholar
Meunier, A. and Velde, B., 2004 Illite: Origin, Evolution and Metamorphism New York Springer.CrossRefGoogle Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. Charpentier, D. Rousset, D. Barres, O. and Michau, N., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition New York Oxford University Press 332 pp..Google Scholar
Muller, F. Drits, V. Plançon, A. and Robert, J.-L., 2000 Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions Clays and Clay Minerals 48 572585.CrossRefGoogle Scholar
Nguyen-Thanh, L., 2012 Mineralogical Characterization of Fe-driven Alteration in Smectites PhD thesis Germany Ernst-Moritz- Arndt-University Greifswald 213 pp..Google Scholar
Nguyen-Thanh, L. Hoang-Minh, T. Kasbohm, J. Herbert, J.-H. Nguyen, T.D. and Le, T.L., 2014 Characterization of Fe-smectites and their alteration potential in relation to engineered barriers for HLW repositories: The Nui Nua clay, Thanh Hoa province, Vietnam Applied Clay Science 101 168176.CrossRefGoogle Scholar
Novak, I. and Číčel, B., 1978 Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition Clays and Clay Minerals 26 341344.CrossRefGoogle Scholar
Pearson, F.J. Arcos, D. Bath, A. Boisson, J.Y. Fernández, A.M. Gäbler, H.E. Gaucher, E. Gautschi, A. Griffault, L. Hernán, P. and Waber, H.N., 2003 Mont Terri Project — geochemistry of water in the Opalinus clay formation at the Mont Terri rock laboratory. Reports of the Federal Office for Water and Geology (FOWG) Geology Series 5 319 pp..Google Scholar
Perronnet, M. Jullien, M. Villiéras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C Applied Clay Science 38 187202.CrossRefGoogle Scholar
Pusch, R., 1992 Use of bentonite for isolation of radioactive waste products Clay Minerals 27 353361.CrossRefGoogle Scholar
Pusch, R., 1999 Microstructural evolution of buffers Engineering Geology 54 3242.CrossRefGoogle Scholar
Pusch, R., 1999 Clay colloid formation and release from MX-80 buffer Technical Report Swedish Nuclear Fuel and Waste Management Co, No. TR-99-31 Stockholm, Sweden Geodevelopment AB 36 pp..Google Scholar
Pusch, R., 2002 The Buffer and Backfill Handbook. Part 2: Materials and techniques Technical Report Swedish Nuclear Fuel and Waste Management Co, No. TR 02-12, Stockholm, Sweden 198 pp..Google Scholar
Pusch, R. and Kasbohm, J., 2002 Alteration of MX-80 by hydrothermal treatment under high salt content conditions Technical Report Swedish Nuclear Fuel and Waste Management Co, No. TR 02-06, Stockholm, Sweden 39 pp..Google Scholar
Pusch, R. and Yong, R.N., 2006 Microstructure of Smectite Clays and Engineering Performance London Taylor and Francis.CrossRefGoogle Scholar
Seim, R. and Tischendorf, G., 1990 Grundlagen der Geochemie Leipzig, Germany VEB Deutscher Verlag für Grundstoffindustrie.Google Scholar
SKI, 2005 Engineered barrier system — Long-term stability of buffer and backfill Swedish Nuclear Power Inspectorate report 2005, No. 48, Stockholm, Sweden 120 pp..Google Scholar
Środoń, J. Elsass, F. McHardy, W.J. and Morgan, D.J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158.CrossRefGoogle Scholar
Stober, I. and Bucher, K., 2002 Origin of salinity of deep groundwater in crystalline rocks Terra Nova 11 181185.CrossRefGoogle Scholar
Suzuki, S. Sazarashi, M. Akimoto, T. Haginuma, M. and Suzuki, K., 2008 A study of the mineralogical alteration of bentonites in saline water Applied Clay Science 41 190198.CrossRefGoogle Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
Ufer, K. Stanjek, H. Roth, G. Dohrmann, R. Kleeberg, R. and Kaufhold, S., 2008 Quantitative phase analysis of bentonites by the Rietveld method Clays and Clay Minerals 56 272282.CrossRefGoogle Scholar
Wolters, F., 2005 Classification of montmorillonites Dissertation Germany Universität Karlsruhe 98 pp..Google Scholar
Xiaodong, L. Prikryl, R. and Pusch, R., 2011 THMC-testing of three expandable clays of potential use in HLW repositories Applied Clay Science 52 419427.CrossRefGoogle Scholar