Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:47:35.742Z Has data issue: false hasContentIssue false

Effect of Acid Treatment and Alkali Treatment on Nanopore Properties of Selected Minerals

Published online by Cambridge University Press:  01 January 2024

Grzegorz Jozefaciuk*
Affiliation:
Institute of Agrophysics of Polish Academy of Sciences, Doswiadczalna 4 str., 20-290 Lublin, Poland
Dorota Matyka-Sarzynska
Affiliation:
Institute of Agrophysics of Polish Academy of Sciences, Doswiadczalna 4 str., 20-290 Lublin, Poland
*
*E-mail address of corresponding author: jozefaci@demeter.ipan.lublin.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonite, biotite, illite, kaolin, muscovite, vermiculite and zeolite were acidified or alkalized with HCl orNaOH of concentrations 0.0, 0.1, 1.0 and 5.0 mole dm−3 at room temperature for 2 weeks and converted into Ca homoionic forms. Low-temperature nitrogen and room-temperature water-vapor adsorption-desorption isotherms were used to characterize the mineral pores of radii between 1 and 30 nm. Nanopore volumes, size distributions, average radii and fractal dimensions were calculated. Values calculated from the nitrogen isotherms differed from those derived from water-vapor data. With an increase of the acid-treatment concentration, the pore volumes measured using both adsorption techniques increased markedly for all minerals. The pore radii measured from nitrogen isotherms appeared to decrease for all minerals except zeolite, while the pore radius calculated from water-vapor data increased in most cases. The fractal dimension measured from water vapor isotherms decreased in all cases indicating smoothing of the mineral surfaces and decrease in pore complexity. No well defined trends in any of the pore parameters listed above were noted under alkaline treatment. In the reaction of each mineral with acid and alkali treatments, the individual character of the mineral and the presence of impurities seems important.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Balci, S., (1999) Effect of heating and acid pre-treatment on pore size distribution of sepiolite Clay Minerals 34 647653 10.1180/000985599546406.CrossRefGoogle Scholar
Bauer, A. and Velde, B., (1999) Smectite transformation in high molar KOH solutions Clay Minerals 34 259273 10.1180/000985599546226.CrossRefGoogle Scholar
Breen, C. and Watson, R., (1998) Acid-activated organoclays: preparation, characterisation and catalytic activity of polycation-treated bentonites Applied Clay Science 12 479494 10.1016/S0169-1317(98)00006-4.CrossRefGoogle Scholar
Cases, J.M. Berend, I. Francois, M. Uriot, J.P. Michot, L.J. and Thomas, F., (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg, Ca, Sr, and Ba exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., (1987) The hydrothermal transformation of kaolinite to muscovite/illlite Geochimica et Cosmochimica Acta 54 29792990 10.1016/0016-7037(90)90115-2.CrossRefGoogle Scholar
Coasne, B. Grosman, A. Dupont-Pavlovsky, N. Ortega, C. and Simon, M., (2001) Adsorption in an ordered and non-interconnected mesoporous material: Single crystal porous silicon Physical Chemistry Chemical Physics 3 11961200 10.1039/b009105g.CrossRefGoogle Scholar
Crawford, J.W. and Matsui, N., (1996) Heterogeneity of the pore and solid volume of soil: distinguishing a fractal space from its non-fractal complement Geoderma 73 183195 10.1016/0016-7061(96)00045-6.CrossRefGoogle Scholar
de la Villa, R.V. Cuevas, J. Ramirez, S. and Leguey, S., (2001) Zeolite formation during the alkaline reaction of bentonite European Journal of Mineralogy 13 635644 10.1127/0935-1221/2001/0013-0635.CrossRefGoogle Scholar
Dekany, I. Turi, L. Fonseca, A. and Nagy, J.B., (1999) The structure of acid-treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations Applied Clay Science 14 141160 10.1016/S0169-1317(98)00056-8.CrossRefGoogle Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.CrossRefGoogle Scholar
El Shafei, G.M.S. Philip, C.A. and Moussa, N.A., (2004) Fractal analysis of hydroxyapatite from nitrogen isotherms Journal of Colloid and Interface Science 277 410416 10.1016/j.jcis.2004.05.002.CrossRefGoogle ScholarPubMed
Hall, P.L. and Astill, D.M., (1989) Adsorption of water by homoionic exchange forms of Wyoming bentonite (SWyl) Clays and Clay Minerals 37 355363 10.1346/CCMN.1989.0370409.CrossRefGoogle Scholar
Hassan, M. and El-Shall, H., (2004) Glauconitic clay of El Gidida, Egypt: evaluation and surface modification Applied Clay Science 27 219222 10.1016/j.clay.2004.04.002.CrossRefGoogle Scholar
Hernandez, M.A. Rojas, F. and Lara, V.B., (2000) Nitrogensorption characterization of the microporous structure of clinoptilolite-type zeolites Journal of Porous Materials 7 443454 10.1023/A:1009662408173.CrossRefGoogle Scholar
Huang, W.L., (1993) The formation of illitic clays from kaolinite in KOH solution from 225 to 350°C Clays and Clay Minerals 41 645654 10.1346/CCMN.1993.0410602.Google Scholar
Jozefaciuk, G., (2002) Effect of acid and alkali treatment on surface-charge properties of selected minerals Clays and Clay Minerals 50 646655.Google Scholar
Jozefaciuk, G. and Bowanko, G., (2002) Effect of acid and alkali treatment on surface areas and adsorption energies of selected minerals Clays and Clay Minerals 50 771783 10.1346/000986002762090308.CrossRefGoogle Scholar
Jozefaciuk, G. Hoffmann, C. and Marschner, B., (2002) Effect of extreme acid and alkali treatment on pore properties of soil samples Journal of Plant Nutrition and Soil Science 165 5966 10.1002/1522-2624(200202)165:1<59::AID-JPLN59>3.0.CO;2-T.3.0.CO;2-T>CrossRefGoogle Scholar
Keenan, A.G. Mooney, R.W. and Wood, L.A., (1951) The relation between exchangeable ions and water adsorption on kaolinite Journal of Physical Colloid Chemistry 55 14621474 10.1021/j150492a006.CrossRefGoogle Scholar
Komadel, P. Schmidt, D. Madejová, J. and Čičel, B., (1990) Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions Applied Clay Science 5 113122 10.1016/0169-1317(90)90017-J.CrossRefGoogle Scholar
Kooyman, P.J. van der Waal, P. and Van Bekkum, H., (1997) Acid dealumination of ZSM-5 Zeolites 18 5053 10.1016/S0144-2449(96)00106-6.CrossRefGoogle Scholar
Low, P.F., (1961) Physical chemistry of clay-water interaction Advances in Agronomy 40 269327 10.1016/S0065-2113(08)60962-1.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Janek, M. and Komadel, P., (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica Acta A. Molecular and Biomolecular Spectroscopy 54 13971406 10.1016/S1386-1425(98)00040-7.CrossRefGoogle Scholar
Mandelbrot, B., (1982) The Fractal Geometry of Nature San Francisco, USA Freeman.Google Scholar
Molinard, A. Clearfield, A. Zhu, H.Y. and Vansant, E.F., (1994) Stability and porosity of alumina-pillared clay in acid and basic solutions Microporous Materials 3 12 10.1016/0927-6513(94)00010-7 109–116.CrossRefGoogle Scholar
Myriam, M. Suarez, M. and Martin Pozas, J.M., (1998) Structural and textural modifications of palygorskite and sepiolite under acid treatment Clays and Clay Minerals 46 225231 10.1346/CCMN.1998.0460301.CrossRefGoogle Scholar
Neimark, A.V., (1990) Calculating fractal dimensions of adsorbents Adsorption Science and Technology 7 210219 10.1177/026361749000700402.CrossRefGoogle Scholar
Neimark, A.V., (1992) A new approach to determination of the surface fractal dimension of porous solids Physica Acta 191 258262 10.1016/0378-4371(92)90536-Y.CrossRefGoogle Scholar
Newman, A.C.D. and Newman, A.C.D., (1985) The interaction of water with clay mineral surfaces Chemistry of Clays and Clay Minerals Essex, UK Longman Scientific and Technical 237274.Google Scholar
Niklasson, G.A., (1993) Adsorption on fractal structures application to cement materials Cement and Concrete Research 23 11531158 10.1016/0008-8846(93)90175-9.CrossRefGoogle Scholar
Notario, J.S. Garcia, J.E. Caceres, J.M. Arteaga, I.J. and Gonzalez, M.M., (1995) Characterization of natural phillipsite modified with orthophosphoric acid Applied Clay Science 10 209217 10.1016/0169-1317(95)00025-Y.CrossRefGoogle Scholar
Pachepsky, Y.a.A. Polubesova, T.A. Hajnos, M. Sokolowska, Z. and Jozefaciuk, G., (1995) Fractal parameters of pore surface area as influenced by simulated soil degradation Soil Science Society of America Journal 59 6875 10.2136/sssaj1995.03615995005900010010x.CrossRefGoogle Scholar
Pernyeszi, T. and Dekany, I., (2003) Surface fractal and structural properties of layered clay minerals monitored by small angle X-ray scattering and low-temperature nitrogen adsorption experiments Colloid Polymer Science 281 7378 10.1007/s00396-002-0758-0.CrossRefGoogle Scholar
Rassineux, F. Griffault, L. Meunier, A. Berger, G. Petit, S. Vieillard, P. Zellagui, R. and Munoz, M., (2001) Expandability-layer stacking relationship during experimental alteration of a Wyoming bentonite in pH 13.5 solutions at 35 and 60°C Clay Minerals 36 197210 10.1180/000985501750177933.CrossRefGoogle Scholar
Rouquerol, R. Avnir, D. Fairbridge, C.W. Everett, D.H. Haynes, J.H. Pernicone, N. Ramsay, J.D.F. Sing, K.S.W. and Unger, K.K., (1994) Recommendations for the characterization of porous solids Pure Applied Chemistry 66 17391758 10.1351/pac199466081739.CrossRefGoogle Scholar
Sarikaya, Y. Alemdaroglu, T. and Onal, M., (2002) Determination of the shape, size and porosity of fine α-Al2O3 powders prepared by emulsion evaporation Journal of the European Ceramic Society 22 305309 10.1016/S0955-2219(01)00294-1.CrossRefGoogle Scholar
Slawinski, C. Sokolowska, Z. Walczak, R. Borowko, R. and Sokolowski, S., (2002) Fractal dimension of peat soils from adsorption and from water retention experiments Colloids and Surfaces A. Physicochemical and Engineering Aspects 208 289301 10.1016/S0927-7757(02)00156-5.CrossRefGoogle Scholar
Sokolowska, Z. Hajnos, M. Borowko, M. and Sokolowski, S., (1999) Adsorption of nitrogen on thermally treated peat soils. The role of energetic and geometric heterogeneity Journal of Colloid and Interface Science 219 110 10.1006/jcis.1999.6462.CrossRefGoogle ScholarPubMed
Srasra, E. and Trabelsi-Ayedi, M., (2000) Textural properties of acid activated glauconite Applied Clay Science 17 7184 10.1016/S0169-1317(00)00008-9.CrossRefGoogle Scholar
Suarez Barrios, M. Flores González, L.V. Vicente Rodríguez, M.A. and Martín Pozas, J.M., (1995) Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties Applied Clay Science 10 247258 10.1016/0169-1317(95)00007-Q.CrossRefGoogle Scholar
Šuchá, V. Środoń, J. Clauer, N. Elsass, F. Eberl, D.D. Kraus, I. and Madejová, J., (2001) Weathering of smectite and illite-smectite under temperate climatic conditions Clay Minerals 36 403419 10.1180/000985501750539490.CrossRefGoogle Scholar
Tanji, K.N., (1995) Agricultural Salinity Assessment and Management Jodphur, India Scientific Publishers.Google Scholar
Taubald, H. Bauer, A. Schafer, T. Geckeis, H. and Satir, M., (2000) Experimental investigation of the effect of high-pH solutions on the Opalinus Shale and the Hammerschmiede Smectite Clay Minerals 35 515524 10.1180/000985500546981.CrossRefGoogle Scholar
Temuujin, J. Jadamba, T. Burma, G. Erdenechimeg, S. Amarsana, J. and MacKenzie, K.J.D., (2004) Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia) Ceramics International 30 251255 10.1016/S0272-8842(03)00096-8.CrossRefGoogle Scholar
Ulrich, B., Ulrich, B. and Sumner, M.E., (1990) An Ecosystem Approach to Soil Acidification Soil Acidity Berlin Springer-Verlag 2879.Google Scholar
Volzone, C. Thompson, J.G. Melnitchenko, A. Ortiga, J. and Palethorpe, S.R., (1999) Selective gas adsorption by amorphous clay-mineral derivatives Clays and Clay Minerals 5 647657 10.1346/CCMN.1999.0470511.CrossRefGoogle Scholar
Yatsu, E., (1988) The Nature of Weathering. An Introduction Tokyo Sozosha.Google Scholar
Zhu, H.Y. Lu, G.Q. and Zhao, X.S., (1998) Thickness and stability of adsorbed film in cylindrical mesopores Journal of Physical Chemistry 102 73717376 10.1021/jp9820267.CrossRefGoogle Scholar