Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T07:35:00.820Z Has data issue: false hasContentIssue false

Influence of Sn and Al Heteroatoms on the Synthesis of Ilerite

Published online by Cambridge University Press:  01 January 2024

Wojciech Supronowicz*
Affiliation:
Carl von Ossietzky University, Faculty of Natural Sciences, Industrial Chemistry II, D-26-11 Oldenburg, Germany
Frank Roessner
Affiliation:
Carl von Ossietzky University, Faculty of Natural Sciences, Industrial Chemistry II, D-26-11 Oldenburg, Germany
*
* E-mail address of corresponding author: wojciech_supronowicz@o2.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrothermal syntheses of a silicate structure comprising a single tetrahedral layer, known as ilerite, were conducted in the presence of tin (SnCl4·5H2O) as a heteroatom. The main aim of the study was to investigate the influence of the above-mentioned compound on the resulting material, as well as the possibility of isomorphous replacement of Si by Sn atoms. For comparison, unmodified ilerite, ilerite impregnated by SnO2, and ilerite synthesized in the presence of Al (aluminum isopropoxide) were also used. The ilerite structure observed was that of Na-ilerite. Syntheses of samples with various Sn/Si ratios (up to the value of 0.01Sn/4Si) and Al/Si ratios (up to the value of 0.005Al/4Si) resulted in a magadiite structure. Synthesis methods applied to Sn-modified materials were found to be unsuitable for the introduction of tetrahedrally substituted Al. The characterization methods used were X-ray diffraction (XRD), temperature-programmed reduction (TPR), and diffuse reflectance infrared fourier transform (DRIFT) spectroscopy. and these indicated the presence of metal oxide species on the surfaces of the crystals, in addition to a small degree of replacement of Si by Sn or Al in the tetrahedral layers.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Auroux, A. Sprinceana, D. and Gervasini, A., 2000 Support effects on de-NOx catalytic properties of supported tin oxides Journal of Catalysis 195 140150 10.1006/jcat.2000.2970.CrossRefGoogle Scholar
Bergk, K.-H. Schwieger, W. and Porsch, M., 1987 Aluminiumfreie Schichtsilicathydrate — Synthese und Eigenschafts-Anwendungs - Beziehungen, Teil II ChemTech 11 459504.Google Scholar
Borbély, G. Beyer, H.K. Karge, H.G. Schwieger, W. Brandt, A. and Bergk, K.H., 1991 Chemical characterization, structural features, and thermal behavior of sodium and hydrogen octosilicate Clays and Clay Minerals 39 490497 10.1346/CCMN.1991.0390504.CrossRefGoogle Scholar
Boronat, M. Concepcion, P. Corma, A. and Renz, M., 2007 Peculiarities of Sn-Beta and potential industrial applications Catalysis Today 121 3944 10.1016/j.cattod.2006.11.010.CrossRefGoogle Scholar
Borowski, M. Kovalev, O. and Gies, F., 2008 Structural characterization of the hydrous layer silicate Na-RUB-18, Na8Si32O64(OH)8·32H2O and derivatives with XPD-, NPD-, and SS NMR experiments Microporous and Mesoporous Materials 107 7180 10.1016/j.micromeso.2007.05.054.CrossRefGoogle Scholar
Brenn, U. Ernst, H. Freude, D. Herrmann, R. Jaehning, R. Karge, H.G. Kaerger, J. Koenig, T. Maedler, B. Pingel, U.-T. Prochnow, D. and Schwieger, W., 2000 Synthesis and characterization of the layered sodium silicate, ilerite Microporous and Mesoporous Materials 40 4352 10.1016/S1387-1811(00)00241-9.CrossRefGoogle Scholar
Cejka, J. and van Bekkum, H. 2005(editors) () Zeolites and Ordered Mesoporous Materials: Progress and Prospects. Studies in Surface Science and Catalysis, 157, 380 pp., Elsevier, Amsterdam.Google Scholar
Chandwadkar, A. Bhat, R. and Ratnasamy, P., 1991 Synthesis of iron-silicate analogs of zeolite mordenite Zeolites 11 4247 10.1016/0144-2449(91)80354-3.CrossRefGoogle Scholar
Corma, A. Domine, M.E. and Valencia, S., 2003 Waterresistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite Journal of Catalysis 215 294304 10.1016/S0021-9517(03)00014-9.CrossRefGoogle Scholar
Feng, F. and Balkus, K.J., 2003 Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template Journal of Porous Materials 10 515 10.1023/A:1024078332686.CrossRefGoogle Scholar
Guerra, D.L. Ferrreira, J.N. Pereira, M.J. Viana, R.R. and Airoldi, C., 2010 Use of natural and modified magadiite as adsorbents to remove Th(IV), U(VI), and Eu(III) from aqueous media - thermodynamic and equilibrium study Clays and Clay Minerals 58 327339 10.1346/CCMN.2010.0580304.CrossRefGoogle Scholar
Haneda, M. Ohzu, S. Kintaichi, Y. Shimizu, K. Shibata, J. Yoshida, H. and Hamada, H., 2001 Sol-gel prepared Sn-Al2O3 catalysts for the selective reduction of NO with propene Bulletin of the Chemical Society of Japan 74 20752081 10.1246/bcsj.74.2075.CrossRefGoogle Scholar
Ikeda, T. Oumi, Y. Takeoka, T. Yokoyama, T. Sano, T. and Hanaoka, T., 2008 Preparation and crystal structure of RUB-18 modified for synthesis of zeolite RWR by topotactic conversion Microporous and Mesoporous Materials 110 488500 10.1016/j.micromeso.2007.06.038.CrossRefGoogle Scholar
Ishii, R. Ikeda, T. and Mizukami, F., 2009 Preparation of a microporous layered organic-inorganic hybrid nanocomposite using p-aminotrimethoxysilane and a crystalline layered silicate, ilerite Journal of Colloid and Interface Science 331 417424 10.1016/j.jcis.2008.11.028.CrossRefGoogle Scholar
Ishimaru, S. Togawa, M. Shinohara, E. Ikeda, R. Kawasaki, H. and Maeda, H., 2004 Structures and dynamics of dodecyldimethylamine oxide intercalated into RUB-18 Journal of Physics and Chemistry of Solids 65 425427 10.1016/j.jpcs.2003.09.014.CrossRefGoogle Scholar
Iwasaki, T. Kuroda, T. Ichio, S. Satoh, M. and Fujita, T., 2006 Seeding effect on crystal growth in hydrothermal synthesis of layered octosilicate Chemical Engineering Communications 193 6976 10.1080/009864490923529.CrossRefGoogle Scholar
Janiszewska, E. Kowalak, S. Supronowicz, W. and Roessner, F., 2009 Synthesis and properties of stannosilicates Microporous and Mesoporous Materials 117 423430 10.1016/j.micromeso.2008.07.032.CrossRefGoogle Scholar
Kim, M.H. Ko, Y. Kim, S.J. and Uh, Y.S., 2001 Vapor phase Beckmann rearrangementof cyclohexanone oxime over metal pillared ilerite Applied Catalysis AGeneral 210, 345353.Google Scholar
Kim, S.J. Jung, K.-D. Joo, O.-S. Kim, E.J. and Kang, T.B., 2004 Catalytic performance of metal oxide-loaded Tailerite for vapor phase Beckmann rearrangement of cyclohexanone oxime Applied Catalysis, A: General 266 173180 10.1016/j.apcata.2004.02.003.CrossRefGoogle Scholar
Kim, S.J. Kim, E.J. Kang, T.B. Jung, K.-D. Joo, O.-S. and Shin, C.-H., 2006 Synthesis and characterization of transition metal oxide-pillared materials with mesoporosity from layered silicate ilerite Journal of Porous Materials 13 2735 10.1007/s10934-006-5487-1.CrossRefGoogle Scholar
Kuhlmann, A. Roessner, F. Schwieger, W. and Gravenhorst, O., 2004 New bifunctional catalyst based on Pt containing layered silicate Na-ilerite Catalysis Today 97 303306 10.1016/j.cattod.2004.07.014.CrossRefGoogle Scholar
Lazar, K. Chandwadkar, A.J. Fejes, P. Cejka, J. and Ramaswamy, A.V., 2000 Valency changes of iron and tin in framework-substituted molecular sieves investigated by in situ Mössbauer spectroscopy Journal of Radioanalytical and Nuclear Chemistry 246 143148 10.1023/A:1006718106583.CrossRefGoogle Scholar
Lowell, S. Shields, J.E. Thomas, M.A. and Thommes, M., 2004 Characterization of Porous Materials and Powders: Surface Area, Pore Size and Density Dordrecht, The Netherlands Springer 10.1007/978-1-4020-2303-3.CrossRefGoogle Scholar
Meier, W.M., 1961 The crystal structure of mordenite (ptilolite) Zeitschrift für Kristallographie 115 439450 10.1524/zkri.1961.115.5-6.439.CrossRefGoogle Scholar
Pál-Borbély, G. Beyer, H.K. Kiyozumi, Y. and Mizukami, F., 1998 Synthesis and characterization of a ferrierite made by recrystallization of an aluminium-containing hydrated magadiite Microporous and Mesoporous Materials 22 5768 10.1016/S1387-1811(98)00094-8.CrossRefGoogle Scholar
Sebag, D. Verrecchia, E.P. Lee, S.-J. and Durand, A., 2001 The natural hydrous sodium silicates from the northern bank of Lake Chad: occurrence, petrology and genesis Sedimentary Geology 139 1531 10.1016/S0037-0738(00)00152-4.CrossRefGoogle Scholar
Superti, G.B. Oliveira, E.C. Pastore, H.O. Bordo, A. Bisio, C. and Marchese, L., 2007 Aluminum magadiite: an acid solid layered material Chemistry of Materials 19 43004315 10.1021/cm0707657.CrossRefGoogle Scholar
Swainson, I.P. Dove, M.T. and Harris, M.J., 1995 Neutron powder diffraction study of the ferroelastic phase transition in sodium carbonate Journal of Physics: Condensed Matter 7 43954417.Google Scholar
Villa de P, A.L. Alarcón, E. and Montes de C, C., 2005 Nopol synthesis over Sn-MCM-41 and Sn-kenyaite catalysts Catalysis Today 107-108 942948 10.1016/j.cattod.2005.07.049.CrossRefGoogle Scholar
Vortmann, S. Rius, J. Siegmann, S. and Gies, H., 1997 Ab initio structure solution from X-ray powder data at moderate resolution: crystal structure of a microporous layer silicate Journal of Physical Chemistry B 101 12921297 10.1021/jp962162g.CrossRefGoogle Scholar
Wróblewska, A. Ławro, E. and Milchert, E., 2006 Technological parameter optimization for epoxidation of methallyl alcohol by hydrogen peroxide over TS-1 catalyst Industrial and Engineering Chemistry Research 45 73657373 10.1021/ie0514556.CrossRefGoogle Scholar