Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:33:40.948Z Has data issue: false hasContentIssue false

Preparation of Kaolinite-Amino Acid Intercalates Derived from Hydrated Kaolinite

Published online by Cambridge University Press:  28 February 2024

Makoto Sato*
Affiliation:
Department of Metallurgical and Inorganic Materials, Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta-ku, Nagoya, 456 Japan
*
E-mail of corresponding author: sato@nmiri.city.nagoya.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intercalation of amino acids into 10.0-Å hydrated kaolinite was studied by powder X-ray diffraction (XRD), differential thermal analysis-thermal gravimetry (DTA-TG), and infrared (IR) spectroscopy. Intercalation was found to be dependent on the chain-length, pH, and the concentration of the amino acid zwitterion. Near the isoelectric point, fully intercalated phases were obtained in solutions of concentration >0.5–1 M for glycine (Gly), 2–3 M for β-alanine (β-Ala), and 12 M for both γ-aminobutyric acid (γ-Aba) and δ-aminovaleric acid (δ-Ava). ∊-aminocaproic acid (∊-Aca) with a long chain (C = 6) was only partially intercalated. Intercalated amino acid formed a mono-molecular arrangement with the alkyl chain tilting toward the layer at an angle related to H2O content. The compositions of the intercalates of the Gly and β-Ala are Al2Si2O5(OH)4·(Gly)0.67·0.24H2O and Al2Si2O5(OH)4·(β-Ala)0.63·0.25H2O, respectively, based on TG data. From IR data, Gly and β-Ala molecules are found intercalated as zwitterions and these molecules form hydrogen bonds with both the Al-OH and Si-O surfaces of kaolinite. Washing the intercalate with water produced a hydrated kaolinite, which may form a second amino-acid intercalate of high order. Thus, hydrated kaolinite intercalates or deintercalates amino acids depending on concentration and conditions.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Anton, O. and Rouxhet, P.G., 1977 Note on the intercalation of kaolinite, dickite and halloysite by dimethyl-sulfoxide Clays and Clay Minerals 25 259263 10.1346/CCMN.1977.0250402.CrossRefGoogle Scholar
Berezhinskii, L.I. Dovbeshko, G.I. Lisitsa, M.P. and Litvinov, G.S., 1998 Vibration spectra of crystalline ß-alanine Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 349358.CrossRefGoogle Scholar
Bodor, G. Bednowitz, A.L. and Post, B., 1967 The crystal structure of e-aminocaproic acid Acta Crystallographica 23 482490 10.1107/S0365110X67003019.CrossRefGoogle Scholar
Carr, R.M. and Chih, H., 1971 Complexes of halloysite with organic compounds Clay Minerals 9 153166 10.1180/claymin.1971.009.2.01.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, RF Jr, 1985 Dehydration of synthetic hydrated kaolinites: A model for the dehydration of halloysite (10 Å) Clays and Clay Minerals 33 415423 10.1346/CCMN.1985.0330507.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, R.F. Jr., 1990 Ordered and dis-ordered organic intercalates of 8.4-A, synthetically hydrated kaolinite Clays and Clay Minerals 38 160170 10.1346/CCMN.1990.0380207.CrossRefGoogle Scholar
Costanzo, P.M. Clemency, C.V. and Giese, R.E. Jr., 1980 Low temperature synthesis of a 10-Å hydrate of kaolinite using dimethylsulfoxide and ammonium Fluoride Clays and Clay Minerals 28 155156 10.1346/CCMN.1980.0280213.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, R.F. Jr. and Clemency, C.V., 1984 Synthesis of a 10-Å hydrated kaolinite Clays and Clay Minerals 32 2935 10.1346/CCMN.1984.0320104.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, R.E. Jr. and Lipsicas, M., 1984 Static and dynamic structure of water in hydrated kaolinite. I. The static structure Clays and Clay Minerals 32 419428 10.1346/CCMN.1984.0320511.CrossRefGoogle Scholar
Cruz, M. Jacobs, H. Fripiat, J.J., Serratosa, J.M. and Sánchez, A., 1973 The nature of the interlayer bonding in kaolin minerals Proceedings of International Clay Conference, Madrid, 1972 Madrid Division de Ciencias C.S.I.C. 3546.Google Scholar
Farmer, V.C. and Russell, J.D., 1964 The infrared spectra of layer silicates Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Frost, R.L. and Kristof, J., 1997 Intercalation of halloysite: A raman spectroscopic study Clays and Clay Minerals 45 551563 10.1346/CCMN.1997.0450407.CrossRefGoogle Scholar
Garrigou-Lagrange, C., 1978 Analyse des spectres de vibration de la ß-alanine, de la taurine et de la ciliatine-ß Ca-nadian Journal of Chemistry 56 663669 10.1139/v78-109.CrossRefGoogle Scholar
Hadži, D. Bratos, S., Schuster, P. Zundel, G. and Sandorfy, C., 1976 Vibrational spectroscopy of the hydrogen bond The Hydrogen Bond, II. Structure and Spectroscopy Amsterdam North-Holland Publishing Company 567611.Google Scholar
Honda, K. Goto, M. and Kurahashi, M., 1990 Structure determination of 5-aminovaleric acid from synchrotron powder diffraction data obtained by large radius camera Chemistry Letters 1316.CrossRefGoogle Scholar
Jang, S.D. and Condrate, RA Sr, 1972 The infrared spectra of glycine adsorbed on various cation-substituted mont-morillonite Journal of Inorganic Nuclear Chemistry 34 15031509 10.1016/0022-1902(72)80269-0.CrossRefGoogle Scholar
Jose, P. and Pant, L.M., 1965 The crystal and molecular structure of ß-alanine Acta Crystallographica 18 806810 10.1107/S0365110X65001810.CrossRefGoogle Scholar
Lahav, N. and Chang, S., 1976 The possible role of solid surface area in condensation reactions during chemical evolution: Reevaluation Journal of Molecular Evolution 8 357380 10.1007/BF01739261.CrossRefGoogle ScholarPubMed
Laulicht, I. Pinchas, S. Samuel, D. and Wasserman, I., 1966 The infrared absorption spectrum of oxygen-18-la-beled glycine Journal of Physical Chemistry 70 27192725 10.1021/j100881a003.CrossRefGoogle ScholarPubMed
Ledoux, R.L. and White, J.L., 1966 Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea Journal of Colloid and Interface Science 21 127152 10.1016/0095-8522(66)90029-8.CrossRefGoogle Scholar
Marsh, R.E., 1958 A refinement of the crystal structure of glycine Acta Crystallographica 11 654663 10.1107/S0365110X58001717.CrossRefGoogle Scholar
Meister, A., 1965 Biochemistry of the Amino Acids 2nd edition London Academic Press 2930.Google Scholar
Olejnik, S. Aylmore, L.A.G. Posner, A.M. and Quirk, J.R., 1968 Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes Journal of Physical Chemistry 72 241249 10.1021/j100847a045.CrossRefGoogle Scholar
Olejnik, S. Posner, A.M. and Quirk, J.R., 1971 The infrared spectra of interlamellar kaolinite-amide complexes. II. Acetamide, N-methylacetamide and dimethylacetamide Journal of Colloid and Interface Science 37 536547 10.1016/0021-9797(71)90331-6.CrossRefGoogle Scholar
Pearson, J.E. and Slifkin, M.A., 1972 The infrared spectra of amino acids and dipeptides Spectrochimica Acta 28A 24032417 10.1016/0584-8539(72)80220-4.CrossRefGoogle Scholar
Raythatha, R. and Lipsicas, M., 1985 Mechanism of synthesis of 10-A hydrated kaolinite Clays and Clay Minerals 33 333339 10.1346/CCMN.1985.0330409.CrossRefGoogle Scholar
Rouxhet, P.G. Samudacheata, N. Jacobs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Minerals 12 171179 10.1180/claymin.1977.012.02.07.CrossRefGoogle Scholar
Serratosa, J.M. Johns, W.D. and Shimoyama, A., 1970 I.R. study of alkyl-ammonium vermiculite complexes Clays and Clay Minerals 18 107113 10.1346/CCMN.1970.0180206.CrossRefGoogle Scholar
Steward, E.G. Player, R.B. and Warner, D., 1973 The crystal and molecular structure of 7-aminobutyric acid deter-mined at low temperature Acta Crystallographica B29 20382040 10.1107/S0567740873006072.CrossRefGoogle Scholar
Svatos, G.E. Curran, C. and Quagliano, J.V., 1955 Infrared absorption spectra of inorganic coordination complexes. V The N-H stretching vibration in coordination compounds Journal of American Chemical Society 11 61596163 10.1021/ja01628a019.CrossRefGoogle Scholar
Theng, B.K.G., 1974 The Chemistry of Clay-Organic Reactions London Adam Hilger 136210.Google Scholar
Tsuboi, M. Takenishi, T. and Nakamura, A., 1963 Some characteristic frequencies of amino acids Spectrochimica Acta 19 271284 10.1016/0371-1951(63)80105-8.CrossRefGoogle Scholar
Tunney, J. and Detellier, C., 1994 Preparation and charac-terization of an 8.4 Å hydrate of kaolinite Clays and Clay Minerals 42 473476 10.1346/CCMN.1994.0420414.CrossRefGoogle Scholar
Uvdal, K. Bodö, P. Ihs, A. Liedberg, B. and Salaneck, W.R., 1990 X-ray photoelectron and infrared spectroscopy of glycine adsorbed upon copper Journal of Colloid and Interface Science 140 207216 10.1016/0021-9797(90)90336-M.CrossRefGoogle Scholar
Wada, K., 1965 Intercalation of water in kaolin minerals American Mineralogist 50 924941.Google Scholar
Weiss, A. Thielepape, W. Göring, G. Ritter, W. Schäfer, H., Rosenqvist, I.T. and Graff-Petersen, P., 1963 Kaolinit-einlagerungs-verbindungen In Proceedings of International Clay Conference, 1963, Stockholm Oxford Pergamon Press 287305.Google Scholar