Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:20:06.647Z Has data issue: false hasContentIssue false

Surface Properties and Texture of Chrysotiles

Published online by Cambridge University Press:  01 July 2024

J. J. Fripiat*
Affiliation:
Laboratoire de Physico-Chimie Minérale, Institut Agronomique, Université de Louvain, Heverlee-Louvain (Belgium)
M. della Faille*
Affiliation:
Laboratoire de Physico-Chimie Minérale, Institut Agronomique, Université de Louvain, Heverlee-Louvain (Belgium)
*
*The University of Louvain and M.R.A.C., Tervuren (Belgium).
Eternit S.A., Kapelle-op-den-Bos (Belgium).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nitrogen surface areas and pore-size distribution curves of various chrysotiles have been measured using a continuous flow method. A model founded on a hexagonal close packing of fibers has been adjusted to fit the frequency distribution curve of the fiber outside diameters obtained from electron micrographs. From this model, theoretical distribution functions of the surface area versus the pore diameter were computed and compared to the experimental data. For one fiber only (i.e. Coalinga chrysotile), the good agreement between the computed and experimental data allows one to conclude that the external pores (between the fibers) and the internal pores (within the fibers) are free from any amorphous material. For the other studied chrysotiles, the degree of filling of the pore system by amorphous materials was always higher than 50%. Under these conditions, hydration water cannot be removed unless the samples are pretreated in the 300°–400°C temperature range. On the contrary, water is driven off from the “clean” Coalinga fibers at temperatures lower than 100°C. Surface area measurements derived from water-adsorption isotherms correspond to those obtained with nitrogen after the hydration water has been removed.

Type
General
Copyright
Copyright © 1967, Springer International Publishing

References

Rates, T. F. (1959) Morphology and crystal chemistry of 1: 1 layer lattice silicates: Amer. Min. 44, 78114.Google Scholar
Bates, T. F. and Comeu, J. J. (1959) Further observations on the morphology of chrysotile and halloysite: Clays and Clay Minerals, Proc. 6th Conf., Pergamon Press, New York, 237–48.Google Scholar
Bates, T. F., Sand, L. V. and Mink, J. F. (1950) Tubular crystal of chrysotile asbestos: Science 7, 512–13.Google Scholar
Cahen, K., Marechal, J., della Faille, M. and Fripiat, J. J. (1965) Pore-size distribution by a rapid, continuous-flow method: Anal. Chem. 37, 133–7.CrossRefGoogle Scholar
Cranston, R. W. and Inkley, F. A. (1957) The determination of pore structure from nitrogen adsorption isotherms: Adv. in Catalysis 9, 143–6, Academic Press, New York.Google Scholar
della Faille, M., De Kimpe, C. and Fripiat, J. J. (1966) Influence de la déshydroxylation sur la morphologie et la texture des chrysotiles: Silicates Industriels 31, 460–73.Google Scholar
Escard, J. (1950) Influence de la déshydratation progressive sur l'aire de surface di montmorillonites: Jour. Chimie Physique 47, 113–17.Google Scholar
Fankuchen, I. and Schneider, M. (1944) Low angle X-ray scattering from chrysotile: Jour. Amer. Chem. Soc. 66, 500–1.CrossRefGoogle Scholar
Healey, F. H. and Young, C. L. (1954) The surface properties of chrysotile asbestos: Jour. Phys. Chem. 58, 885–6.CrossRefGoogle Scholar
Maser, M., Rice, R. V. and Klug, H. P. (1960) Chrysotile morphology: Amer. Min. 45, 680–8.Google Scholar
Noll, W. and Kircher, H. (1950) Zur Morphologie des Chrysotil-Asbesten: Naturwiss. 37, 540–1.CrossRefGoogle Scholar
Noll, W. and Kircher, H. (1951) Uber die Morphologie von Asbesten und ihren Zusammenhang mit der Kristal-Struktur: Neues Jahrh. Min. Mh. 10, 219–40.Google Scholar
Noll, W. and Kircher, H. (1952) Veranderung von Chrysotil-Asbest im Electronen-mikroskop: Naturwiss. 39, 188–91.CrossRefGoogle Scholar
Pundsack, F. L., (1956) The density and structure of chrysotile asbestos: Jour. Phys. Chem. 60, 361–4.CrossRefGoogle Scholar
Pundsack, F. L. (1961) The pore structure of chrysotile asbestos: Jour. Phys. Chem. 65, 30–3.CrossRefGoogle Scholar
Turkevich, J. and Hillier, J. (1949) Electron microscopy on colloidal systems: Anal. Chem. 21, 475–85.CrossRefGoogle Scholar
Whittaker, E. J. W. (1957) The structure of chrysotile. V. Diffuse reflections and fibers texture: Acta Cryst. 10, 149.CrossRefGoogle Scholar
Young, G. J. and Healey, F. H. (1954) The physical structure of asbestos: Jour. Phys. Chem. 58, 881–4.CrossRefGoogle Scholar